Электроемкость. Единицы электроемкости. Конденсаторы. Что такое электроемкость конденсатора? Как влияет диэлектрик на электроёмкость

Одним их важнейших параметров, при помощи которого характеризуют конденсатор, является его электроёмкость (C). Физическая величина C, равная:

называется емкостью конденсатора. Где q - величина заряда одной из обкладок конденсатора, а - разность потенциалов между его обкладками. Электроемкость конденсатора — это величина, которая зависит то размеров и устройства конденсатора.

Для конденсаторов с одинаковым устройством и при равных зарядах на его обкладках разность потенциалов воздушного конденсатора будет в раз меньше, чем разность потенциалов между обкладками конденсатора, пространство которого между обкладками заполнено диэлектриком с диэлектрической проницаемостью . Значит емкость конденсатора с диэлектриком (C) в раз больше, чем электроемкость воздушного конденсатора ():

где - диэлектрическая проницаемость диэлектрика.

Единицей емкости конденсатора считают емкость такого конденсатора, который единичным зарядом (1 Кл) заряжается до разности потенциалов, равной одному вольту (в СИ). Единицей емкости конденсатора (как и любой эклектической емкости) в международной системе единиц (СИ) является фарад (Ф).

Электроемкость плоского конденсатора

Поле между обкладками плоского конденсатора в большинстве случаев считают однородным. Однородность нарушается только около краев. При расчете емкости плоского конденсатора данными краевыми эффектами обычно пренебрегают. Это возможно, если расстояние между пластинами мало в сравнении с их линейными размерами. В таком случае емкость плоского конденсатора вычисляют как:

где - электрическая постоянная; S - площадь каждой (или наименьшей) пластины; d - расстояние между пластинами.

Электрическая емкость плоского конденсатора, который содержит N слоев диэлектрика толщина каждого , соответствующая диэлектрическая проницаемость i-го слоя , равна:

Электрическая емкость цилиндрического конденсатора

Конструкция цилиндрического конденсатора включает две соосных (коаксиальных) цилиндрические проводящие поверхности, разного радиуса, пространство между которыми заполняет диэлектрик. Электрическая емкость такого конденсатора находят как:

где l - высота цилиндров; - радиус внешней обкладки; - радиус внутренней обкладки.

Емкости сферического конденсатора

Сферическим конденсатором называют конденсатор, обкладками которого являются две концентрические сферические проводящие поверхности, пространство между ними заполнено диэлектриком. Емкость такого конденсатора находят как:

где - радиусы обкладок конденсатора.

Примеры решения задач

ПРИМЕР 1

Задание Пластины плоского воздушного конденсатора несут заряд, который равномерно распределен с поверхностной плотностью . При этом расстояние между его обкладками, равно . На какую величину изменится разность потенциалов на обкладках этого конденсатора, если его пластины раздвинуть до расстояния ?
Решение Сделаем рисунок.


В задаче при изменении расстояния между пластинами конденсатора заряд на его обкладках не изменяется, изменяются емкость и разность потенциалов на обкладках. Емкость плоского воздушного конденсатора равна:

где . Емкость этого же конденсатора можно определить как:

где U - разность потенциалов на обкладках конденсатора. Для конденсатора в первом случае имеем:

Для того же конденсатора, но после того как пластины раздвинули, имеем:

Используя формулу (1.3) и применяя соотношение:

выразим разность потенциалов

Следовательно, для конденсатора во втором состоянии получим:

Найдем изменение разности потенциалов:

Ответ

Плоским конденсатором обычно называ-ют систему плоских проводящих пластин — обкладок, разделенных диэлектриком. Про-стота конструкции такого конденсатора по-зволяет сравнительно просто рассчитывать его электроемкость и получать значения, совпадающие с результатами эксперимента.

Укрепим две металлические пластины на изоляционных подставках и соединим с электрометром так, что одна из пластин будет присоединена к стержню электромет-ра, а вторая — к его металлическому кор-пусу (рис. 4.71). При таком соединении электрометр будет измерять разность по-тенциалов между пластинами, которые об-разуют плоский конденсатор из двух пла-стин. Проводя исследования, необходимо пом-нить, что

при постоянном значении заряда пластин уменьшение разности потенциалов свидетельствует об увеличении электроем-кости конденсатора, и наоборот.

Сообщим пластинам разноименные заря-ды и отметим отклонение стрелки электро-метра. Приближая пластины друг к другу (уменьшая расстояние между ними), заме-тим уменьшение разности потенциалов. Та-ким образом, при уменьшении расстояния между пластинами конденсатора его элект-роемкость увеличивается. При увеличении расстояния показания стрелки электрометра увеличиваются, что является свидетельст-вом уменьшения электроемкости.

об-ратно пропорциональна расстоянию между его обкладками.

C ~ 1 / d ,

где d — расстояние между обкладками.

Эту зависимость можно изобразить гра-фиком обратной пропорциональной зависи-мости (рис. 4.72).

Будем смещать пластины одну относи-тельно другой в параллельных плоскостях, не изменяя расстояния между ними.

При этом площадь перекрытия пластин будет уменьшаться (рис. 4.73). Увеличение разности потенциалов, отмеченное электрометром, будет свидетельствовать об умень-шении электроемкости.

Увеличение площади перекрытия пластан приведет к увеличению емкости.

Электроемкость плоского конденсатора про-порциональна площади пластин, которые пере-крываются.

C ~ S,

где S — площадь пластин.

Эту зависимость можно представить гра-фиком прямой пропорциональной зависи-мости (рис. 4.74).

Возвратив пластины в начальное поло-жение, внесем в пространство между ними плоский диэлектрик. Электрометр отметит уменьшение разности потенциалов между пластинами, что свидетельствует об увели-чении электроемкости конденсатора. Если между пластинами поместить другой диэлек-трик, то изменение электроемкости будет иным.

Электроемкость плоского конденсатора за-висит от диэлектрической проницаемости ди-электрика.

C ~ ε ,

где ε — диэлектрическая проницаемость ди-электрика. Материал с сайта

Такая зависимость показана на графике рис. 4.75.

Результаты опытов можно обобщить в ви-де формулы ёмкости плоского конденсатора :

C = εε 0 S / d,

где S — площадь пластины; d — расстояние между ними; ε — диэлектрическая прони-цаемость диэлектрика; ε 0 — электрическая постоянная.

Конденсаторы, которые состоят из двух пластин, в практике применяются очень редко. Как правило, конденсаторы имеют много пластин, соединенных между собой по определенной схеме.

На этой странице материал по темам:

  • Решение задач по теме электроемкость плоского конденсатора

  • Как влияет диэлектрик на электроёмкость?

  • Теория плоских конденсаторов

  • График электроемкости плоского конденсатора от площади его пластин

  • Заключение по электроемкости

Вопросы по этому материалу:

  • Какое строение плоского конденсатора?

  • По изменению какой величины в опыте можно делать заключение об изменении электроемкости?

  • «Физика - 10 класс»

    При каком условии можно накопить на проводниках большой электрический заряд?

    При любом способе электризации тел - с помощью трения, электростатической машины, гальванического элемента и т. д. - первоначально нейтральные тела заряжаются вследствие того, что некоторая часть заряженных частиц переходит от одного тела к другому.
    Обычно этими частицами являются электроны.

    При электризации двух проводников, например от электростатической машины, один из них приобретает заряд +q, а другой -q.
    Между проводниками появляется электрическое поле и возникает разность потенциалов (напряжение).
    С увеличением заряда проводников электрическое поле между ними усиливается.

    В сильном электрическом поле (при большом напряжении и соответственно при большой напряженности) диэлектрик (например, воздух) становится проводящим.
    Возможен так называемый пробой диэлектрика: между проводниками проскакивает искра, и они разряжаются.
    Чем меньше увеличивается напряжение между проводниками с увеличением их зарядов, тем больший заряд можно на них накопить.


    Электроемкость.


    Введем физическую величину, характеризующую способность двух проводников накапливать электрический заряд.
    Эту величину называют электроемкостью .

    Напряжение U между двумя проводниками пропорционально электрическим зарядам, которые находятся на проводниках (на одном +|q|, а на другом -|q|).
    Действительно, если заряды удвоить, то напряженность электрического поля станет в 2 раза больше, следовательно, в 2 раза увеличится и работа, совершаемая полем при перемещении заряда, т. е. в 2 раза увеличится напряжение.

    Поэтому отношение заряда q одного из проводников (на другом находится такой же по модулю заряд) к разности потенциалов между этим проводником и соседним не зависит от заряда.

    Оно определяется геометрическими размерами проводников, их формой и взаимным расположением, а также электрическими свойствами окружающей среды.

    Это позволяет ввести понятие электроемкости двух проводников.

    Электроемкостью двух проводников называют отношение заряда одного из проводников к разности потенциалов между ними:

    Электроёмкость уединённого проводника равна отношению заряда проводника к его потенциалу, если все другие проводники бесконечно удалены и потенциал бесконечно удалённой точки равен нулю.

    Чем меньше напряжение U между проводниками при сообщении им зарядов +|q| и -|q|, тем больше электроемкость проводников.

    На проводниках можно накопить большие заряды, не вызывая пробоя диэлектрика.
    Но сама электроемкость не зависит ни от сообщенных проводникам зарядов, ни от возникающего между ними напряжения.


    Единицы электроемкости.


    Формула (14.22) позволяет ввести единицу электроемкости.

    Электроемкость двух проводников численно равна единице, если при сообщении им зарядов +1 Кли -1 Клмежду ними возникает разность потенциалов 1 В.

    Эту единицу называют фарад (Ф); 1 Ф = 1 Кл/В.

    Из-за того что заряд в 1 Кл очень велик, емкость 1 Ф оказывается очень большой.
    Поэтому на практике часто используют доли этой единицы: микрофарад (мкФ) - 10 -6 Ф и пикофарад (пФ) - 10 -12 Ф.

    Важная характеристика проводников - электроемкость.
    Электроемкость проводников тем больше, чем меньше разность потенциалов между ними при сообщении им зарядов противоположных знаков.


    Конденсаторы.


    Систему проводников очень большой электроемкости вы можете обнаружить в любом радиоприемнике или купить в магазине. Называется она конденсатором. Сейчас вы узнаете, как устроены подобные системы и от чего зависит их электроемкость.

    Большой электроемкостью обладают системы из двух проводников, называемые конденсаторами. Конденсатор представляет собой два проводника, разделенные слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Проводники в этом случае называются обкладками конденсатора.

    Простейший плоский конденсатор состоит из двух одинаковых параллельных пластин, находящихся на малом расстоянии друг от друга (рис.14.33).
    Если заряды пластин одинаковы по модулю и противоположны по знаку, то силовые линии электрического поля начинаются на положительно заряженной обкладке конденсатора и оканчиваются на отрицательно заряженной (рис.14.28). Поэтому почти все электрическое поле сосредоточено внутри конденсатора и однородно .

    Для зарядки конденсатора нужно присоединить его обкладки к полюсам источника напряжения, например к полюсам батареи аккумуляторов. Можно также первую обкладку соединить с полюсом батареи, у которой другой полюс заземлен, а вторую обкладку конденсатора заземлить. Тогда на заземленной обкладке останется заряд, противоположный по знаку и равный по модулю заряду незаземленной обкладки. Такой же по модулю заряд уйдет в землю.

    Под зарядом конденсатора понимают абсолютное значение заряда одной из обкладок.

    Электроемкость конденсатора определяется формулой (14.22).

    Электрические поля окружающих тел почти не проникают внутрь конденсатора и не влияют на разность потенциалов между его обкладками. Поэтому электроемкость конденсатора практически не зависит от наличия вблизи него каких-либо других тел.

    Электроемкость плоского конденсатора.


    Геометрия плоского конденсатора полностью определяется площадью S его пластин и расстоянием d между ними. От этих величин и должна зависеть емкость плоского конденсатора.

    Чем больше площадь пластин, тем больший заряд можно на них накопить: q~S . С другой стороны, напряжение между пластинами согласно формуле (14.21) пропорционально расстоянию d между ними. Поэтому емкость

    Кроме того, емкость конденсатора зависит от свойств диэлектрика между пластинами. Так как диэлектрик ослабляет поле, то электроемкость при наличии диэлектрика увеличивается.

    Проверим на опыте зависимости, полученные нами из рассуждений. Для этого возьмем конденсатор, у которого расстояние между пластинами можно изменять, и электрометр с заземленным корпусом (рис.14.34). Соединим корпус и стержень электрометра с пластинами конденсатора проводниками и зарядим конденсатор. Для этого нужно коснуться наэлектризованной палочкой пластины конденсатора, соединенной со стержнем. Электрометр покажет разность потенциалов между пластинами.

    Раздвигая пластины мы обнаружим увеличение разности потенциалов . Согласно определению электроемкости (см. формулу (14.22)) это указывает на ее уменьшение. В соответствии с зависимостью (14.23) электроемкость действительно должна уменьшаться с увеличением расстояния между пластинами.

    Вставив между обкладками конденсатора пластину из диэлектрика, например из органического стекла, мы обнаружим уменьшение разности потенциалов . Следовательно, электроемкость плоского конденсатора в этом случае увеличивается . Расстояние между пластинами d может быть очень малым, а площадь S - большой. Поэтому при небольших размерах конденсатор может иметь большую электроемкость.

    Для сравнения: в отсутствие диэлектрика между обкладками плоского конденсатора при электроемкости в 1 Ф и расстоянии между пластинами d = 1 мм он должен был бы иметь площадь пластин S = 100 км 2 .

    Кроме того, ёмкость конденсатора зависит от свойств диэлектрика между пластинами. Так как диэлектрик ослабляет поле, то электроёмкость при наличии диэлектрика увеличивается: где ε - диэлектрическая проницаемость диэлектрика.


    Последовательное и параллельное соединения конденсаторов. На практике конденсаторы часто соединяют различными способами. На рисунке 14.40 представлено последовательное соединение трёх конденсаторов.

    Если точки 1 и 2 подключить к источнику напряжения, то на левую пластину конденсатора С1 перейдёт заряд +qy на правую пластину конденсатора СЗ - заряд -q. Вследствие электростатической индукции правая пластина конденсатора С1 будет иметь заряд -q, а так как пластины конденсаторов С1 и С2 соединены и до подключения напряжения были электро нейтральны, то по закону сохранения заряда на левой пластине конденсатора С2 появится заряд +q и т. д. На всех пластинах конденсаторов при таком соединении будет одинаковый по модулю заряд:

    q = q 1 = q 2 = q 3 .

    Определить эквивалентную электроёмкость - это значит определить электроёмкость такого конденсатора, который при той же разности потенциалов будет накапливать тот же заряд q, что и система конденсаторов.

    Разность потенциалов φ1 - φ2 складывается из суммы разностей потенциалов между пластинами каждого из конденсаторов:

    φ 1 - φ 2 = (φ 1 - φ A) + (φ A - φ B) + (φ B - φ 2),
    или U = U 1 + U 2 + U 3 .

    Воспользовавшись формулой (14.23), запишем:

    На рисунке 14 41 представлена схема параллельно соединённых конденсаторов. Разность потенциалов между пластинами всех конденсаторов одинакова и равна:

    φ 1 - φ 2 = U = U 1 = U 2 = U 3 .

    Заряды на пластинах конденсаторов

    q 1 = C 1 U, q 2 = C 2 U, q 3 = C 3 U.

    На эквивалентном конденсаторе ёмкостью С экв заряд на пластинах при той же разности потенциалов

    q = q 1 + q 2 + q 3 .

    Для электроёмкости, согласно формуле (14.23) запишем: C экв U = C 1 U + C 2 U + C 3 U, следовательно, С экв = C 1 + С 2 + С 3 , и в общем случае


    Различные типы конденсаторов.


    В зависимости от назначения конденсаторы имеют различное устройство. Обычный технический бумажный конденсатор состоит из двух полосок алюминиевой фольги, изолированных друг от друга и от металлического корпуса бумажными лентами, пропитанными парафином. Полоски и ленты туго свернуты в пакет небольшого размера.

    В радиотехнике широко применяют конденсаторы переменной электроемкости (рис.14.35). Такой конденсатор состоит из двух систем металлических пластин, которые при вращении рукоятки могут входить одна в другую. При этом меняются площади перекрывающихся частей пластин и, следовательно, их электроемкость. Диэлектриком в таких конденсаторах служит воздух.

    Значительного увеличения электроемкости за счет уменьшения расстояния между обкладками достигают в так называемых электролитических конденсаторах (рис.14.36). Диэлектриком в них служит очень тонкая пленка оксидов, покрывающих одну из обкладок (полосу фольги). Другой обкладкой служит бумага, пропитанная раствором специального вещества (электролита).

    Конденсаторы позволяют накапливать электрический заряд. Электроемкость плоского конденсатора пропорциональна площади пластин и обратно пропорциональна расстоянию между пластинами. Кроме того, она зависит от свойств диэлектрика между обкладками.

Последние материалы раздела:

Планшетный компьютер Lenovo не включается
Планшетный компьютер Lenovo не включается

Поломка планшета - одна из самых неприятных ситуаций, особенно если вы активно используете этот девайс в повседневной работе и чувствуете себя без...

Samsung Kies — швейцарский нож для корейских смартфонов Аварийное восстановление прошивки через kies
Samsung Kies — швейцарский нож для корейских смартфонов Аварийное восстановление прошивки через kies

На этот раз я покажу вам как установить стоковую прошивку на свой смартфон или планшет линейки Samsung Galaxy, то есть восстановить состояние...

Microsoft WorldWide Telescope — виртуальный симулятор Вселенной Основные режимы работы WorldWide Telescope
Microsoft WorldWide Telescope — виртуальный симулятор Вселенной Основные режимы работы WorldWide Telescope

Многие любители астрономии берут с собой «в поля» ноутбуки с приложениями, облегчающими поиск и наблюдение за небесными объектами. Те же самые...