Доклад: Аппаратные средства ПК. Аппаратные средства 50 к аппаратным средствам компьютера относятся

К аппаратному обеспечению относятся устройства, образующую конфигурацию компьютера. Различают внутренние и внешние устройства. Согласование между отдельными узлами и блоками выполняется с помощью аппаратно-логических устройств, называемых аппаратными интерфейсами. Стандарты на аппаратные интерфейсы называют протоколами. Протокол - это совокупность технических условий, которые должны быть обеспечены разработчиками устройств.

Персональный компьютер - универсальная техническая система, конфигурацию которой можно изменять по мере необходимости. Тем ни менее существует понятие базовой конфигурации. В настоящее время базовая конфигурация состоит из 4 составляющих

1. системный блок

2. монитор

3. клавиатура

Системный блок

Системный блок - основной узел, внутри которого установлены наиболее важные компоненты. Устройства, находящиеся внутри системного блока называются внутренними, а подключаемые к нему снаружи - внешними и периферийными. Основной характеристикой корпуса системного блока является параметр, называемый форм-фактором . От него зависят требования, предъявляемые к размещаемым устройствам. Форм-фактор системного блока обязательно должен быть согласован с форм-фактором главной (системной, материнской) платы. В настоящее время наиболее распространенны корпуса с форм-фактором ATX. Корпуса поставляются вместе с блоком питания.


Внутренние устройства системного блока

Материнская плата - основная плата компьютера. На ней размещаются:

1. процессор - основная микросхема, выполняющая арифметические и логические операции - мозг компьютера. Процессор состоит из ячеек, похожих на ячейки оперативной памяти, но в этих ячейках данные могут не только храниться, но и изменяться. Внутренние ячейки процессора называются регистрами . Часть регистров являются командными, то есть такими, которые воспринимают данные как команды, управляющие обработкой данных в других регистрах. Управляя засылкой данных в разные регистры, можно управлять обработкой данных. На этом основано исполнение программ. С остальными устройствами процессор связан несколькими группами проводников, называемых шинами . Основных шин три: шина данных, адресная шина и командная шина . Адресная шина состоит из 32 параллельных проводников(32-разрядная). По ней передаются адреса ячеек оперативной памяти. К ней подключается процессор для копирования данных из ячейки ОП в один из своих регистров. Само копирование происходит по шине данных . В современных компьютерах она, как правило, 64-разрядная, т.е. одновременно на обработку поступает 8 байт. По командной шине передаются команды из той области ОП, в которой хранятся программы. В большинстве современных компьютеров командная шина 32-разрядная, но есть уже и 64-разрядные.

2. Основными характеристиками процессора являются разрядность, тактовая частота и кэш-память . Разрядность указывает, сколько бит информации процессор может обработать за один раз (один такт). Тактовая частота определяет количество тактов за секунду, например, для процессора выполняющего около 3 миллиардов тактов за секунду тактовая частота равна 3 Ггц/сек. Обмен данными внутри процессора происходит быстрее, чем с оперативной памятью. Для того, чтобы уменьшить число обращений к ОП, внутри процессора создают буферную область - кэш-память. Принимая данные из ОП, процессор одновременно записывает их в кэш-память. При последующем обращении процессор ищет данные в кэш-памяти. Чем больше кэш-память, тем быстрее работает компьютер.

3. микропроцессорный комплект (чипсет ) - набор микросхем, управляющих работой внутренних устройств и определяющих основные функциональные возможности материнской платы.

4. шины - наборы проводников, по которым происходит обмен сигналами между внутренними устройствами.

5. оперативная память - набор микросхем, предназначенных для временного хранения данных

Оперативная память(RAM - random access memory) - массив ячеек, способных хранить данные. память может быть динамической и статической. Ячейки динамической памяти можно представить в виде микроконденсаторов, накапливающих электрический заряд. Динамическая память является основной оперативной памятью компьютера. Ячейки статической памяти представляют собой тригеры - элементы в которых хранится не заряд, а состояние (включен/выключен). Этот вид памяти более быстрый, но и более дорогой и используется в т.н. кэш-памяти, предназначенной для оптимизации работы процессора. Оперативная память размещается на стандартных панельках (модулях, линейках). Модули вставляются в специальные разъёмы на материнской плате.

6. ПЗУ - постоянное запоминающее устройство. В момент включения компьютера его оперативная память пуста. Но процессору, чтобы начать работать, нужны команды. Поэтому сразу после включения на адресной шине выставляется стартовый адрес. Это происходит аппаратно. Этот адрес указывает на ПЗУ. В ПЗУ находятся "зашитые" программы, которые записываются туда при создании микросхем ПЗУ и образуют базовую систему ввода-вывода(BIOS - Base Input/Output System). Основное назначение этого пакета - проверить состав и работоспособность базовой конфигурации компьютера и обеспечить взаимодействие с клавиатурой, монитором, жёстким диском и дисководом гибких дисков.

7. разъёмы для подключения дополнительных внутренних устройств (слоты).

Жёсткий диск

Жёсткий диск - устройство для долговременного хранения больших объёмов данных и программ.

На самом деле, это не один диск, а группа дисков, имеющих магнитное покрытие и вращающихся с высокой скоростью. Над поверхностью каждого диска располагается головка чтения-записи. При высоких скоростях вращения возникает аэродинамическая подушка между поверхностью диска и головкой. При изменении силы тока, протекающего через головку, меняется напряженность магнитного поля в зазоре, что вызывает изменение магнитного поля ферромагнитных частиц, образующих покрытие диска. Так осуществляется запись на диск. Чтение происходит в обратном порядке. Намагниченные частицы наводят в головке ЭДС самоиндукции, возникают электромагнитные сигналы, которые усиливаются и передаются на обработку. Управление работой жёсткого диска осуществляется специальным устройством - контроллером жесткого диска. Функции контроллера частично вмонтированы в жёсткий диск, а частично находятся на микросхемах чипсета. Отдельные виды высокопроизводительных контроллеров поставляются на отдельной плате.

Дисковод гибких дисков

Для оперативного переноса небольших (до 1.4Мб) объёмов информации используются гибкие диски, которые вставляют в специальный накопитель - дисковод.

Дисковод для компакт-дисков CD или DVD

Принцип действия устройства CD состоит в считывании(записи) данных, с помощью лазерного луча, отражающегося от поверхности диска. При этом плотность записи, по сравнению с магнитными дисками, очень высокая. На стандартный CD-диск можно записать до 650Мб. Появление формата DVD ознаменовало собой переход на новый, более продвинутый, уровень в области хранения и использования данных, звука и видео. Первоначально аббревиатура DVD расшифровывалась, как digital video disc, это оптические диски с большой емкостью. Эти диски используются для хранения компьютерных программ и приложений, а так же полнометражных фильмов и высококачественного звука. Поэтому, появившаяся несколько позже расшифровка аббревиатуры DVD, как digital versatile disc, т.е. универсальный цифровой диск - более логична. Снаружи, диски DVD выглядят как обычные диски CD-ROM. Однако возможностей у DVD гораздо больше. Диски DVD могут хранить в 26 раз больше данных, по сравнению с обычным CD-ROM. Имея физические размеры и внешний вид, как у обычного компакт-диска или CD-ROM, диски DVD стали огромным скачком в области емкости для хранения информации, по сравнению со своим предком, вмещающим 650MB данных. Стандартный однослойный, односторонний диск DVD может хранить 4.7GB данных. Но это не предел -- DVD могут изготавливаться по двухслойному стандарту, который позволяет увеличить емкость хранимых на одной стороне данных до 8.5GB. Кроме этого, диски DVD могут быть двухсторонними, что увеличивает емкость одного диска до 17GB.

Видеокарта

Совместно с монитором видеокарта образует видеосистему компьютера. Видеокарта(видеоадаптер) выполняет все операции, связанные с управлением экраном монитора и содержит видеопамять в которой хранятся данные об изображении.

Звуковая карта

Звуковая карта выполняет операции, связанные с обработкой звука, речи, музыки. Звук воспроизводится через колонки (наушники), подключаемые к выходу звуковой карты. Имеется также разъём для подключения микрофона. Основным параметром ЗК является разрядность, Чем выше разрядность, тем меньше погрешность, связанная с оцифровкой, тем лучше звучание.

Порты (каналы ввода - вывода)

На задней стенке корпуса современных ПК размещены (точнее могут размещаться) следующие порты:

Game - для игровых устройств (для подключения джойстика)

VGA - интегрированный в материнскую плату VGA – контроллер для подключения монитора для офисного или делового ПК

COM - асинхронные последовательные (обозначаемые СОМ1-СОМЗ). Через них обычно подсоединяются мышь, модем и т.д.

PS/2 – асинхронные последовательные порты для подключения клавиатура и манипулятора мышь

LPT - параллельные (обозначаемые LPT1-LPT4), к ним обычно подключаются принтеры

USB - универсальный интерфейс для подключения 127 устройств (этот интерфейс может располагаться на передней или боковой стенке корпуса)

IEЕЕ-1394 (FireWire) - интерфейс для передачи больших объемов видео информации в реальном времени (для подключения цифровых видеокамер, внешних жестких дисков, сканеров и другого высокоскоростного оборудования). Интерфейсом FireWire оснащены все видеокамеры, работающие в цифровом формате. Может использоваться и для создания локальных сетей.

Прежде чем рассмотреть вопрос о классификации компьютеров, остановимся на ряде определений. Обработка информации является важной составляющей информационного процесса. Под обработкой информации будем понимать действия, совершаемые над информацией, представленной в формализованном виде, т. е. в виде структур данных, с помощью определенных алгоритмов – последовательности действий, осуществляемых по определенным правилам и реализуемых с помощью технических средств. Результатом обработки является тоже информация, которая удовлетворяет поставленным целям (например, обработка числовой, текстовой, графической и другой информации) и может быть представлена в соответствующих формах. Попытки автоматизировать процесс обработки информации и вычислений на основе открытий в области математики, физики, химии и т. д. в течение нескольких столетий привели к созданию современного компьютера (от англ. computer, что дословно переводится как вычислитель) или электронно-вычислительная машина (ЭВМ – русское название, которое в настоящее время по ряду причин используется достаточно редко). В современных информационных технологиях компьютер используется в качестве основного технического средства для обработки информации.

Таким образом, компьютером называется техническая система, предназначенная для автоматизации процесса обработки информации и вычислений на основе принципа программного управления. В данном определении используется термин «техническая система», который подчеркивает взаимосвязь аппаратных и программных средств компьютера.

Аппаратные средства представляет собой совокупность технических устройств, обеспечивающих процесс функционирования компьютера. Аппаратные средства часто называют хардом, устоявшимся сленгом в русском языке (от англ. hardware).

Программные средства представляют собой совокупность программ, обеспечивающих процесс обработки информации на компьютере. Программные средства часто называют сленговым словом «софт» (от англ. software).

Как уже отмечалось, в основе любой классификации лежит рациональный выбор признаков, по которым рассматриваемый объект или явление можно разделить на группы или классы. Основной целью классификации является формирование групп или классов с характерными свойствами, присущими только этой группе или классу, что позволяет более детально изучить эти свойства и проследить динамику их изменения во времени. В настоящее время классификация компьютеров не закреплена соответствующими стандартами, что объясняется высокими темпами развития компьютерной техники и информационных технологий. Приблизительно каждые два года происходит замена аппаратных и программных средств компьютера новыми, причем общемировая тенденция направлена на сокращение этих сроков. В этой связи любая классификация компьютеров является условной, поскольку некоторые свойства, которые были характерными для определенных групп (классов) компьютеров в прошлом, утрачивают эти свойства со временем. Принципиально может быть бесконечно много классификационных признаков. Выделим наиболее существенные признаки и проведем по ним классификацию. Условная классификация компьютеров по этим признакам приведена в табл. 5.1.

Таблица 5.1

По времени создания компьютеры подразделяют на поколения (первое, второе, третье и четвертое), которые характеризуются степенью развития аппаратных и программных средств.

Компьютеры первого поколения относятся к середине 40-х и концу 50-х гг. XX в. (1946 г. был создан первый цифровой электронный компьютер ENIAC). В качестве элементной базы использовались электронные лампы, программирование осуществлялось в машинных кодах. Программа вводилась в компьютер путем соединения соответствующих гнезд на специальных наборных платах с помощью электрических проводников. Максимальное быстродействие достигало 20 тыс. операций в секунду.

Компьютеры второго поколения относятся к концу 50-х и середине 60-х гг. XX в. В качестве элементной базы использовались полупроводниковые приборы – транзисторы, что позволило повысить надежность и быстродействие компьютеров. Программирование осуществлялось на языках программирования высокого уровня. Программа вводилась в компьютер с помощью перфокарт и перфолент. Максимальное быстродействие составляло до 1 млн операций в секунду.

Компьютеры третьего поколения относятся к периоду с середины 60-х по середину 70-х гг. XX в. В качестве элементной базы использовались интегральные микросхемы среднего уровня интеграции. Программирование осуществлялось на языках программирования высокого уровня. Программа вводилась в компьютер с помощью перфокарт и перфолент, появились накопители информации на гибких магнитных дисках. Максимальное быстродействие составляло около 1 млн операций в секунду. Компьютеры третьего поколения стали семейством компьютеров с единой архитектурой, что обеспечило их программную совместимость. Они имели развитые операционные системы и обладали возможностями мультипрограммирования.

Компьютеры четвертого поколения относятся к периоду с середины 70-х гг. XX в. по настоящее время. В качестве элементной базы использовались большие интегральные микросхемы (БИС), а затем (в настоящее время) сверхбольшие интегральные микросхемы (СБИС), что позволило существенно повысить надежность и быстродействие компьютеров. На основе БИС, а затем и СБИС строились и строятся микропроцессоры – устройства для непосредственного выполнения процесса обработки данных и программного управления этим процессом. Программирование осуществлялось и осуществляется на нескольких десятках языков программирования высокого уровня, включая и объектно-ориентированные языки программирования. Программы вводились и вводятся в компьютер с помощью разнообразных носителей информации – накопителей на гибких магнитных дисках, жестких магнитных дисков, оптических дисков и т. д. Максимальное быстродействие компьютеров четвертого поколения составляет около 1 трлн операций в секунду.

По форме представления обрабатываемой информации компьютеры подразделяются на три класса: цифровые, аналоговые и гибридные.

Цифровые компьютеры обрабатывают информацию, представленную в цифровой форме (в двоичной системе счисления), и являются самым представительным классом современных компьютеров. Цифровые компьютеры используются для решения самых разнообразных задач, поддающихся формализации, для которых разработаны соответствующие численные методы решений.

Аналоговые компьютеры обрабатывают информацию, представленную в аналоговой форме, т. е. в виде непрерывно меняющихся значений физической величины (электрического напряжения или тока). Аналоговые компьютеры используются для решения физических и математических задач, содержащих дифференциальные уравнения. Кроме того, они используются в системах автоматического регулирования для решения задач в режиме реального времени.

Гибридные компьютеры обрабатывают информацию, представленную в цифровой и аналоговой форме. В таких компьютерах цифровая часть предназначена для управления и выполнения логических операций, а аналоговая – для решения математических уравнений.

По назначению компьютеры подразделяются на три класса: профессиональные, персональные и специализированные.

Профессиональные компьютеры предназначены для обработки больших объемов информации с высокой скоростью. По аппаратному и программному обеспечению они значительно превосходят другие классы.

Персональные компьютеры предназначены для обработки информации на одном автоматизированном рабочем месте (АРМ), при этом их вычислительных ресурсов должно быть достаточно для поддержки такого рабочего места. Кроме того, они должны быть доступны по цене для массового потребителя.

предназначены для обработки информации, связанной с решением узкоспециализированных задач (вычислительных и управляющих). Они не обладают универсальностью, т. е. ориентированы на конкретные практические задачи. Специализированные компьютеры, называемые также контроллерами, встраиваются в системы автоматического управления сложными техническими устройствами или технологическими процессами.

По степени универсальности компьютеры подразделяются на два класса: общего назначения и специализированные.

Компьютеры общего назначения являются универсальными и позволяют обрабатывать информацию, связанную с решением широкого круга задач.

Специализированные компьютеры позволяют обрабатывать информацию, связанную с решением узкопрофессиональных задач.

По способам использования компьютеры подразделяются на два класса: коллективного и индивидуального использования.

Компьютеры коллективного использования предназначены для обслуживания одновременной работы нескольких пользователей. Такие компьютеры, называемые также серверами, используются и для организации работы компьютерных сетей.

Компьютеры индивидуального использования предназначены для обслуживания работы индивидуального пользователя.

По производительности компьютеры подразделяются на три класса: ординарной, высокой и сверхвысокой производительности.

Производительность компьютера является сложной интегральной характеристикой, под которой обычно понимается время, затрачиваемое на решение определенной задачи. Производительность зависит от специфики решаемой задачи, быстродействия компьютера, информационного объема его оперативной памяти и т. д. Быстродействие (скорость обработки информации) компьютера в свою очередь определяется быстродействием микропроцессора, системной магистрали (служит для обмена информацией между функциональными блоками компьютера), периферийных устройств, качеством конструктивных решений и т. д. Поэтому оценить производительность компьютера и тем более классов компьютеров достаточно сложно. На практике производительность компьютера оценивают по некоторым параметрам, определяющим его производительность, т. е. осуществляют косвенную оценку его производительности. К таким параметрам относят: тактовую частоту микропроцессора, скорость переключения системной шины и ее разрядность, тип используемого интерфейса, число команд, выполняемых в секунду, число операций, выполняемых компьютером над числами с плавающей запятой, в секунду и т. д. Выделим некоторые из этих параметров, которые позволяют наиболее просто произвести косвенную оценку производительности компьютера.

Тактовая частота микропроцессора определяет количество элементарных операций (операции, производимые логическими элементами), выполняемых микропроцессором в секунду. При этом под тактом понимается время выполнения элементарной операции. Например, если в техническихарактеристиках компьютера указана тактовая частота микропроцессора, равная 2,4 ГГц, то это означает, что его тактовая частота в герцах будет равна 2,4 ГГц = 2,4 · 1000 МГц = 2,4 · 1000 · 1000 КГц = 2,4 · 1000 · 1000 · 1000 Гц и он может выполнить 2400000000 элементарных операций в секунду.

Число команд, выполняемых в секунду, обычно обозначается аббревиатурой MIPS (Mega Instruction Per Second), что означает количество миллионов команд, выполняемых в секунду. Например, запись 100 MIPS означает 100 млн команд в секунду.

Число операций, выполняемых компьютером над числами с плавающей запятой, в секунду обозначается аббревиатурой MFLOPS (Mega Floating Operations Per Second) или GFLOPS (Giga Floating Operations Per Second), что соответственно означает количество миллионов и миллиардов операций в секунду.

Компьютеры ординарной производительности называют также микрокомпьютерами. К ним можно отнести персональные и специализированные компьютеры. Их условная производительность достигает значений до 10 MFLOPS.

Компьютеры высокой производительности называют также мэйнфреймами. К ним можно отнести профессиональные компьютеры, у которых условная производительность достигает значений до 100 MFLOPS.

Компьютеры сверхвысокой производительности называют также суперкомпьютерами. К ним можно отнести профессиональные компьютеры, у которых условная производительность достигает значений свыше 100 MFLOPS.

По особенности архитектуры компьютеры подразделяются на два класса: с открытой архитектурой и закрытой архитектурой

Под архитектурой компьютера понимается совокупность аппаратных и программных средств, организованных в систему, обеспечивающую функционирование компьютера.

Открытая архитектура была предложена американской фирмой DEC (Digital Equipment Corporation) в 70-х гг. XX в., а затем была успешно использована при разработке персонального компьютера фирмой IBM (International Business Machines Corporation), который и появился в 1981 г.

К особенностям открытой архитектуры относятся:

Модульный принцип построения компьютера, в соответствии с которым все его компоненты выполнены в виде законченных конструкций – модулей, имеющих стандартные размеры и стандартные средства сопряжения;

Наличие общей (системной) информационной шины, к которой можно подключать различные дополнительные устройства через соответствующие разъемные соединения;

Совместимость новых аппаратных и программных средств с их предыдущими версиями, основанная на принципе «сверху – вниз», что означает, что последующие версии должны поддерживать предыдущие.

Подавляющее число современных компьютеров имеют открытую архитектуру.

Закрытая архитектура не обладает характерными чертами открытой архитектуры и не позволяет обеспечить подключение дополнительных устройств, не предусмотренных разработчиком. Компьютеры, имеющие такую архитектуру, эффективны при решении узкоспециализированных задач, например вычислительных.

Условную классификацию компьютеров, приведенную в табл. 5.1, можно продолжить. Например, по организации вычислительных процессов компьютеры можно подразделить на четыре класса: без разделения ресурсов, с разделением ресурсов, многопользовательские с разделением ресурсов и мультипроцессорные; по режиму взаимодействия с пользователем компьютеры можно разделить на два класса: без взаимодействия с пользователем и интерактивные; по способу выполнения обработки информации компьютеры можно разделить на два класса: скалярные (последовательная обработка информации) и векторные (параллельная обработка информации); по совместимости аппаратных средств компьютеры можно разделить на два класса: компьютеры, имеющие аппаратную платформу IBM PC и аппаратную платформу Apple Macintosh и т. д.

Однако, поскольку предметом настоящего рассмотрения является в основном персональный компьютер (PersonalComputer – PC), то сделаем выводы по приведенной классификации применительно к персональному компьютеру. Согласно классификации современный персональный компьютер относится к четвертому поколению, является цифровым, общего назначения, индивидуального использования, ординарной производительности и имеет открытую архитектуру. Для персонального компьютера можно выделить классификационные признаки второго уровня, к которым отнесем функциональные возможности и конструктивные особенности. В соответствии с действующим с 1999 г. международным сертификационным стандартом в области персональных компьютеров (спецификация РС99) по функциональным возможностям персональные компьютеры (ПК) можно подразделить на следующие группы: массовые ПК (Consumer PC), деловые ПК (Office PC), портативные ПК (Mobile PC), ПК, используемые в качестве рабочих станций (Workstation PC), и ПК для развлечений (Entertainment PC).

Массовые компьютеры представляют значительную часть ПК и предназначены для широкого круга потребителей и решения соответствующих задач.

Деловые ПК широко используются в государственных учреждениях, фирмах и т. д. и имеют конфигурацию, соответствующую целям и задачам тех мест, где они используются.

Портативные ПК приобретают в настоящее время все большую популярность, поскольку позволяют работать пользователям не только в стационарно оборудованных рабочих местах и оснащаются средствами мобильной связи для подключения к сетевым ресурсам и, в частности, к глобальной сети Интернет.

ПК, используемые в качестве рабочих станций, предназначены для организации компьютерных сетей, в которых они выполняют функции клиентов или рабочих станций.

Развлекательные ПК оснащаются мощными мультимедийными средствами для воспроизведения высококачественного звука и графики.

По конструктивным особенностям ПК можно подразделяются на две группы: стационарные и переносные.

Стационарные ПК предназначены для организации автоматизированного рабочего места в офисе, учебном компьютерном классе и т. д.

Переносные или мобильные ПК подразделяются на следующие группы: портативные (Laptop), блокнотные (Notebook), суперблокнотные (Subnotebook), карманные, или наладонники (Palmtop).

Портативные ПК по своим техническим характеристикам и аппаратным возможностям приближаются к стационарным ПК, но имеют меньшие габаритные размеры и массу (4 ? 8 кг).

Дальнейшее развитие основного направления, связанного с конструированием средств электронной техники – микроминиатюризацией (при меньших габаритах получить те же характеристики), привело к созданию блокнотных, суперблокнотных и карманных ПК, которые по своим характеристикам и функциональным возможностям почти не уступают стационарным ПК. Основное отличие состоит в удобстве работы пользователя, габаритных размерах и массе.

5.2. Структура и аппаратные средства современного персонального компьютера

5.2.1. Структурная организация персонального компьютера

Современные компьютеры массового применения – персональные компьютеры имеют достаточно сложную структуру, которая определяет взаимосвязь между аппаратными средствами в технической системе, называемой компьютером. В процессе эволюции аппаратных и программных средств изменялась и структура персонального компьютера, однако без изменений остались пока основные принципы его структурной организации, сформулированные выдающимся математиком, профессором Принстонского университета США Джоном фон Нейманом (1903–1957) и его коллегами в 1946 г.

Сущность этих принципов сводится к следующему:

Информация представляется (кодируется) и обрабатывается (выполняются вычислительные и логические операции) в двоичной системе счисления, информация разбивается на отдельные машинные слова, каждое из которых обрабатывается в компьютере как единое целое;

Машинные слова, представляющие данные (числа) и команды (определяют наименование задаваемых операций), различаются по способу использования, но не по способу кодирования;

Машинные слова размещаются и хранятся в ячейках памяти компьютера под своими номерами, называемыми адресами слов;

Последовательность команд (алгоритм) определяет наименование производимых операций и слова (операнды), над которыми производятся эти операции, при этом алгоритм, представленный в форме операторов машинных команд, называется программой;

Порядок выполнения команд однозначно задается программой.

Компьютерное представление информации в двоичной системе счисления (двоичном коде) упрощает и повышает надежность аппаратных средств компьютера, поскольку реализовать технические устройства с двумя устойчивыми состояниями, равными логической единице и нулю, гораздо проще, чем при использовании других систем счисления.

В соответствии с данными принципами Дж. фон Нейманом и его коллегами была реализована структура компьютера, которая в настоящее время носит название классической (рис. 5.1).


Рис. 5.1. Классическая структура компьютера


В состав компьютера, приведенного на рис. 5.1 входят следующие структурные элементы и связи:

АЛУ (арифметико-логическое устройство) – выполняет арифметические и логические операции над информацией, представленной в двоичном коде, т. е. обеспечивает выполнение процедур по обработке данных;

УУ (устройство управления) – организует процесс выполнения программ;

ЗУ (запоминающее устройство) – предназначено для размещения и хранения последовательности команд (программ) и данных;

УВВ (устройства ввода-вывода) – обеспечивают ввод и вывод данных из компьютера для установления прямой и обратной связи между пользователем и компьютером;

Внутренние связи предназначены для обмена информацией между устройствами компьютера, они реализуются с помощью линий связей (электрических проводников), тонкими стрелками показаны линии, по которым передаются команды, а толстыми – данные.

Кратко опишем работу данного компьютера.

С помощью какого-либо устройства ввода в ЗУ вводится программа. УУ считывает содержимое ячейки памяти ЗУ, где находится первая команда, и организует ее выполнение. Эта команда может задавать выполнение арифметических и логических операций над данными с помощью АЛУ, чтение из памяти данных для выполнения этих операций, вывод данных на устройство вывода и т. д. Затем выполняется вторая команда, третья и т. д. УУ выполняет инструкции программы автоматически.

Структура современных персональных компьютеров отличается от классической структуры компьютера. Перечислим ниже основные отличия (особенности) :

1) АЛУ и УУ объединены в единое устройство, называемое микропроцессором (МП, центральный процессор, реализованный на СБИС), кроме того, в состав МП входит ряд других устройств, предназначенных для хранения, записи, считывания и обмена информацией;

2) применение специализированных устройств – контроллеров, которым передается часть функций МП, связанная с обменом информации и управлением работой устройств для ввода и вывода (внешних устройств) информации, такая децентрализация позволяет повысить эффективность работы компьютера в целом за счет сокращения времени простоя МП;

3) вместо отдельных линий связи между устройствами используется системная магистраль с соответствующими устройствами сопряжения. Наличие системной магистрали в персональном компьютере позволяет осуществить обмен информацией между устройствами компьютера, уменьшить число линий связи, подключить различные дополнительные устройства через соответствующие разъемные соединения и т. д.

Таким образом, с учетом перечисленных особенностей персональный компьютер отвечает принципам открытой архитектуры, и его структура, в которую вошли основные устройства, приобретает вид, показанный на рис. 5.2. Данная структура была предложена фирмой IBM, поэтому персональные компьютеры, имеющие такую структуру, называются IBM – совместимые (IBM PC).


Рис. 5.2. Структура персонального компьютера:

МП – микропроцессор; ПП – постоянная память; ОП – оперативная память: ВК – видеоконтроллер; ПИ – последовательный интерфейс; И – интерфейсы других внешних устройств; К – контроллер; ЗК – звуковой контроллер: ИП – параллельный интерфейс; СА – сетевой адаптер; НГМД – накопитель на гибких магнитных дисках; НЖМД – накопитель на жестких магнитных дисках; НОД – накопитель на оптических дисках; НМЛ – накопитель на магнитной ленте; ПУ – печатающее устройство; БП – блок питания и УО – устройства охлаждения.


На рис. 5.2 обоюдоострыми стрелками показаны шины, по которым обмен информацией между устройствами происходит в обоих направлениях.

Основные устройства, входящие в структуру стационарного персонального компьютера, группируют в блоки и устройства, которые имеют конструктивно законченный вид. Эти блоки определяют состав персонального компьютера и определяют меру полезности компьютера для пользователя.

В состав стационарного персонального компьютера входят:

Системный блок;

Внешние устройства.

В переносных, или мобильных, персональных компьютерах, как правило, системный блок и основная часть внешних устройств (клавиатура, монитор, мышь и т. д.) конструктивно представляют собой единое устройство.

К основным компонентам системного блока относятся: микропроцессор (МП), системная магистраль, устройства постоянной (ПП) и оперативной памяти (ОП), видеоконтроллер (ВК), звуковой контроллер (ЗК), контроллеры (К), устройства последовательного (ПИ), параллельного (ИП) и интерфейса (И) других внешних устройств, накопители на гибких (НГМД), жестких (НЖМД) и оптических дисках (НОД), накопитель на магнитной ленте (НМЛ), сетевой адаптер (СА), модем (встроенный), блок питания (БП) и устройства охлаждения (УО).

Указанные устройства устанавливаются в корпус системного блока на соответствующие посадочные места, конструктивные размеры которого стандартизированы и имеет форм-фактор AT и АТХ . Кроме того, корпус системного блока имеет обычно один из двух вариантов исполнения: настольный горизонтального типа (desktop) и настольный вертикального типа (tower). Соответственно вариант вертикального исполнения может иметь несколько модификаций: MiniTower, MidiTower, BigTower, SuperBigTower и File-Server . Отличаются они друг от друга числом отсеков для установки устройств формата 3,5 и 5 дюймов. В корпусе системного блока размещаются также блок питания и устройства охлаждения. Блок питания обеспечивает электропитание всех устройств системного блока и ряда внешних устройств и подключается к промышленной сети переменного тока напряжением 220 В и частотой 50 Гц. В переносных персональных компьютерах электропитание обеспечивается за счет выносного блока питания, подключаемого к сети или к аккумуляторам, который обеспечивает автономную работу в течение 1,5–4 часов. В системном блоке размещены и устройства охлаждения, поскольку отдельные компоненты могут сильно нагреваться: блок питания, микропроцессор, видеоконтроллер (видеоадаптер) и т. д. В качестве охлаждающих устройств используются в основном радиаторы и вентиляторы (кулеры).

Таким образом, в системном блоке стационарного персонального компьютера размещаются основные компоненты, обеспечивающие выполнение компьютерных программ на аппаратном уровне.

Внешние устройства (по отношению к системному блоку) по функциональному назначению можно представить в виде нескольких групп: устройства ввода и вывода информации, устройства, выполняющие одновременно функции ввода и вывода информации, внешние запоминающие устройства.

К устройствам ввода информации относятся клавиатура, координатные устройства ввода (манипуляторы типа мышь, трекбол, контактная или сенсорная панель, джойстик), сканер, цифровые камеры (видеокамеры и фотоаппараты), микрофон.

К устройствам вывода информации относятся монитор, печатающие устройства (ПУ, принтер и графопостроитель), звуковые колонки и наушники.

К устройствам, выполняющим функции ввода и вывода информации относятся сетевой адаптер, модем (модулятор – демодулятор), звуковая плата.

К внешним запоминающим устройствам относятся: внешние накопители на гибких и жестких магнитных дисках, внешние накопители на оптических и магнитооптических дисках, накопители на основе флэш-памяти и т. д.

5.2.2. Аппаратные средства персонального компьютера

5.2.2.1. Основные компоненты системного блока

Рассмотрим более подробно основные компоненты системного блока.

Часть компонентов системного блока конструктивно располагается на системной или материнской плате (motherboard или mainboard). Плата представляет собой конструктивный узел, на котором размещаются микросхемы устройств, и обеспечивается их необходимое электрическое соединение между собой. Системная плата имеет разъемы для электрического соединения с другими платами компьютера. Таким образом, системная плата является важнейшим конструктивным узлом системного блока, связывающим основные его компоненты и обеспечивающим их взаимодействие. От основных характеристик элементов, установленных на системной плате, зависят производительность персонального компьютера и его функциональные возможности. Системная плата является комплектующим изделием, т. е. производится и поставляется различными фирмами, которые при ее разработке ориентируются на определенный вид микропроцессора. Среди наиболее крупных производителей системных плат в настоящее время можно выделить компании Intel (Integrated Electronics, США), SiS (Silicon Integrated Systems Corporation, США) и VIA Technologies (Тайвань).

На системной плате устанавливаются: микропроцессор, набор микросхем системной логики, модули (устройства) постоянной и оперативной памяти, разъемы для установки и подключения микропроцессора, модулей памяти, внешних запоминающих устройств, источника питания и т. д., кроме того, на материнской плате имеется система шин, обеспечивающая обмен информацией между элементами установленных на системную плату. На рис. 5.3 приведен внешний вид одной из моделей (Intel 845GE) системной платы фирмы Intel.

Рис. 5.3. Внешний вид системной платы фирмы Intel (Intel 845GE)


В настоящее время общепризнанным лидером по разработке и производству системных плат является компания Intel, поэтому терминология, связанная с этими изделиями, является англоязычной. Для правильной оценки конкретной продукции этой компании желательно знать эту терминологию. На рис. 5.4 приведена упрощенная функциональная схема системной платы современного персонального компьютера с обозначенем отдельных ее элементов на английском языке:


Рис. 5.4. Функциональная схема системной платы персонального компьютера


CPU (Central Processing Unit) – микропроцессор (МП);

Host Bus – шина микропроцессора;

Chipset – набор микросхем, установленных на системной плате для обеспечения обмена данными между CPU и периферийными устройствами. Chipset определяет функциональные возможности материнской платы: тип и объем оперативной и кэш-памяти, тактовую частоту системной шины, поддерживаемые шины и т. д.;

NORTH BRIDGE (северный мост) – микросхема системного контроллера, или Memory Controller Hub (центр управления памятью);

SOUTH BRIDGE (южный мост) – микросхема контроллера ввода-вывода или I/O Controller Hub (центр управления вводом-выводом);

Main Memory – микросхемы главной (оперативной) памяти, которые в данном случае представляют собой микросхемы быстродействующей динамической памяти с произвольным доступом RDRAM (Rambus Dynamic Random Access Memory);

Direct RDRAM Interface – интерфейс прямого доступа к памяти;

Graphics Controller – контроллер управления графическими устройствами;

PCI Bus (Peripheral Component Interconnect Bus) – системная шина, предназначенная для обмена информацией между микропроцессором и другими (внешними) устройствами;

PCI Slots – разъемы для подключения внешних устройств;

IDE (Integrated Device Electronics) Ports – порты (разъемы) для подключения внешних накопителей информации;

USB (Universal Serial Bus – универсальная последовательная шина) Ports – порты (разъемы) для подключения низкоскоростных внешних устройств;

Hub Interface – интерфейс обмена информацией между микросхемами системного контроллера и контроллера ввода-вывода, входящих в состав чипсета;

Flash BIOS (Basic Input Output System) – микросхема постоянной памяти, представляет собой энергонезависимую память с возможностью перезаписи информации непосредственно на системной плате;

LAN (local Area Network) Connect – разъем для подключения к локальной сети;

Keyboard – клавиатура;

FD (Floppy Disk) – накопитель на гибких магнитных дисках;

Mouse – мышь.

Рассмотрим основные элементы системной платы.

Микропроцессор (МП) – важнейшее устройство персонального компьютера, отвечающего за процессы управления и выполнения арифметических и логических операций над данными представляет собой функционально законченное программно-управляемое устройство. Современные микропроцессоры реализованы на сверхбольших интегральных схемах (СБИС). От основныхарактеристик МП в значительной степени зависит эффективность использования персонального компьютера в целом.

Своим происхождением слово «микропроцессор» обязано микроэлектронной технике и технике автоматического регулирования и управления процессами. В России наибольшее распространение получили МП двух компаний – Intel и AMD (Advanced Micro Devices). В процессе развития МП компании Intel сменилось несколько поколений, которые можно рассматривать как семейство микропроцессоров Intel. Каждое поколение МП характеризуется соответствующим уровнем схемотехнических и технологических решений, положенных в основу их производства. Эти решения определяли и определяют основные характеристики МП. В табл. 5.2 приведены поколения МП Intel и некоторые ихарактеристики.

Таблица 5.2

Деление МП на поколения, приведенное в табл. 5.2, условно. МП третьего поколения Intel 8080 были выбраны компанией IBM для установки в свой первый персональный компьютер IBM PC/XT (XT-eXTra), выпущенный в 1981 г., а МП Intel 80286 был установлен на персональных компьютерах IBM PC/AT (Advanced Technology – передовая технология). В дальнейшем компания IBM стала использовать тип МП в названии персонального компьютера. Например, компьютер, в котором применялся МП Intel Pentium, стал называться Pentium. Наряду с производством МП Pentium //компания Intel освоила производство МП под названием Celeron (упрощенный вариант Pentium). Современные модели МП Celeron по своим основным характеристикам немногим уступают моделям МП Pentium. Более подробно об отличительных особенностях поколений МП семейства Intel можно прочесть в соответствующей литературе . Наряду с компанией Intel российский компьютерный рынок освоила и компания AMD, которая выпускает МП под названием ATHLON и DURON. Данные МП по своим характеристикам в основном соответствуют МП компании Intel.

Современный МП является сложным электронным устройством, которое включает в себя следующие основные компоненты: арифметико-логическое устройство (АЛУ), устройство управления и синхронизации (УУ), регистры общего назначения (РОН) и внутреннюю кэш-память, внутреннюю шину. О назначении АЛУ и УУ говорилось ранее. РОН предназначены для временного хранения операндов исполняемой команды и результатов вычислений. Внутренняя кэш-память (от англ. cache – запас) применяется для ускорения доступа к информации, размещенной в оперативной памяти (ОП) компьютера. Так как быстродействие ОП ниже, чем МП, то между ними устанавливают промежуточную (буферную память), называемую кэш-памятью. Кэш-память МП – сверхбыстродействующее запоминающее устройство, в которое записывается та часть информации из ОП, с которой МП работает в данный момент. В персональных компьютерах используется в основном двухуровневая кэш-память: первый уровень, обозначаемый L1, реализован непосредственно в самом МП и имеет информационный объем от единиц до десятков килобайт; второй уровень L2 реализован в виде микросхемы и устанавливается на системную плату. Информационный объем кэш-памяти второго уровня может составлять от сотен до тысяч килобайт. Объем кэш-памяти зависит от конкретного типа МП и может иметь информационный объем до нескольких Мегабайт. Время доступа к информации в таких запоминающих устройствах варьируется от единиц до десятков наносекунд (не).

Устройства, входящие в МП, в соответствии с определенными принципами организуются в систему, называемую архитектурой. Архитектура МП зависит от системы команд, применяемой в МП, под которой понимается совокупность всех возможных команд, которые может выполнить МП над данными.

В современных ПК применяются МП двух основных архитектур:

CISC (Complex Instruction Set Computer) – процессор с полной системой команд;

RISC (Reduced Instruction Set Computer) – процессор с сокращенным набором команд.

Каждая из этих архитектур имеет свои особенности. CISC-процессоры имеют большой набор микрокоманд (в среднем до 400 в зависимости от конкретного типа МП), но при этом усложняется устройство управления МП и увеличивается время исполнения команд на микропрограммном уровне. RISC-процессоры имеют ограниченный набор микрокоманд (в среднем до 100), что упрощает устройство управления МП, и сокращают время выполнения команд. Однако для реализации некоторых действий в RISC-процессорах требуется большее число микрокоманд, чем в CISC-процессорах . Таким образом, считается, что CISC-процессоры являются более универсальными, но менее быстродействующими по сравнению с RISC-процессорами . МП компании Intel, устанавливаемые в ПК фирмы IBM, имеют архитектуру CISC, в которой используются некоторые особенности, характерные для архитектуры RISC-процессоров .

К характеристикам МП относятся:

Разрядность МП, которая определяет число двоичных разрядов (бит), одновременно обрабатываемых при выполнении одной команды. МП Pentium IV имеют 64 разрядную шину данных;

Тактовая частота МП, определяющая количество элементарных операций, выполняемых МП в секунду. Некоторые модели МП Pentium IV, используемые в настоящее время в ПК, имеют тактовую частоту до 4 ГГц;

Частота переключения шины МП (Host Bus, см. рис. 5.4), которая определяет ее пропускную способность. Например, если частота переключения составляет 800 МГц, то пропускная способность шины при ее разрядности 64 бит приблизительно составит 64 · 800 = 6 Гбайт/с;

Информационный объем кэш-памяти уровней L1 и L2;

Напряжение питания (В);

Рассеиваемая электрическая мощность (Вт) и т. д.

В качестве примера рассмотрим следующую широко практикуемую запись обозначения МП в прайс-листах торгующих организаций:


CPU Intel Pentium 4 661 3.6 ГГц/ 2Мб/ 800МГц BOX 775-LGA.

Intel – компания производитель МП;

Pentium 4 661 – модель МП;

3.6 ГГц – тактовая частота МП;

2 Мб – информационный объем кэш-памяти в мегабайтах уровня L2 (2048 Кбайт), уровень L1 для данного МП составляет 16 Кбайт;

800МГц – частота переключения шины МП;

BOX 775-LGA – тип корпуса и разъема (socket) МП.


Наряду с МП на системной плате присутствует набор микросхем системной логики, обеспечивающий логическую организацию работы МП, памяти и устройств ввода-вывода, который называется чипсет (англ. chipset – chip – микросхема, set – набор). В данный набор входят: системный контроллер, называемый NORTH BRIDGE, или центр управления памятью, и системный контроллер ввода-вывода – SOUTH BRIDGE, или центр управления вводом-выводом. Современные чипсеты выполняют функции следующих устройств компьютера: контроллера оперативной памяти; контроллера кэш-памяти; контроллера прямого доступа к памяти (DMA); контроллера прерываний; моста шины PCI; контроллера интерфейса IDE и USB; контроллера клавиатуры и т. д. Производителями микросхем системной логики являются компании Intel (IntegratedElectronics, США), AMD (AdvancedMicro Devices), SiS (Silicon Integrated Systems Corporation, США), VIA Technologies (Тайвань) и т. д.

Важнейшими элементами системной платы являются устройства ОП и ПП, которые называются также устройствами основной памяти компьютера. ОП, или как ее еще называют в англоязычной технической литературе – RAM (Random Access Memory), предназначена для хранения исполняемых программ и данных. ОП обеспечивает хранение информации лишь в течение сеанса работы компьютера, и после его выключения информация безвозвратно теряется. ОП представляет собой набор микросхем, устанавливаемых на системную плату. Существует два вида ОП, отличающиеся друг от друга техническими характеристиками: динамическая ОП (DRAM – Dynamic RAM) и статическая ОП (Static RAM). Динамическая и статическая ОП имеют свои недостатки и преимущества, однако в ПК в качестве ОП в настоящее время используется в основном динамическая ОП. Более подробно о физических принципах построения динамической и статической ОП и их конструктивных особенностях можно прочесть в соответствующей литературе . К основным характеристикам ОП можно отнести:

Информационный объем (в ПК может достигать единиц гигабайт, в среднем 512 Мбайт);

Время доступа к данным составляет несколько десятков наносекунд (в среднем 70 не).

ПП, или ROM (Read Only Memory), предназначена для хранения постоянной, т. е. неизменяемой, информации и доступна лишь для чтения программ и данных, записанных при изготовлении компьютера. После выключения компьютера информация в ПП сохраняется, т. е. данная память является энергонезависимой. В ПП хранится системная информация: программа начальной загрузки компьютера, программы тестирования устройств компьютера и т. д. Программа начальной загрузки является частью операционной системы и носит название базовой системы ввода-вывода (BIOS – Basic Input Output System). ПП представляет собой микросхему, которая может быть однократно программируемой (ПЗУ – постоянное запоминающее устройство) или многократно программируемой (ППЗУ – перепрограммируемое постоянное запоминающее устройство). В настоящее время в ПК используются в основном ППЗУ. Например, на рис. 5.4 ППЗУ обозначено как Flash BIOS.

Для обмена информацией между компонентами ПК используется системная магистраль, которая включает в себя два типа шин: локальную и системную. Под шинами понимается совокупность проводных каналов связей (электрических линий), конструктивно располагающихся на системной плате. В ПК тип используемых шин определяется системной платой.

В качестве локальных шин используются шины, непосредственно подключенные к МП, т. е. это шина МП (Host Bus, см. рис. 5.4), шина для подключения видеоконтроллера, управляющего монитором, шина для подключения внешних накопителей, шина для подключения средне– и низкоскоростных внешних устройств и т. д.

Посредством локальной шины МП происходит обмен информацией между МП и чипсетом с высокой скоростью. Данная локальная шина работает на частоте несколько сотен мегагерц.

Локальная шина для подключения видеоконтроллера, которая в ПК называется также AGP (Advanced Graphic Port), позволяет организовать непосредственную связь между видеоконтроллером и ОП, что значительно повышает скорость обмена видеоданными между ними за счет устранения задержек при обращении к ОП. Эта шина является 32-разрядной и работает на частоте 66 МГц.

В качестве шин для подключения внешних накопителей информации могут использоваться шины на основе разных стандартов, однако наиболее широко используются в ПК шины IDE (Integrated Device Electronics) или ее модификация EIDE (Enhanced IDE), а также шина SCSI (Small Computer System Interface).

Шина для подключения средне– и низкоскоростных внешних устройств носит название USB (Universal Serial Bus), в настоящее время широко используется шина USB версии интерфейса 2.0. Скорость передачи данных по данной шине достигает 480 Мбит/с.

Системная, или общая, шина предназначена для обеспечения обмена информацией между внешними устройствами и МП. Системная шина состоит из трех отдельных шин: шины адреса, шины данных и шины управления. Каждая из этих шин характеризуется своей разрядностью, т. е. числом параллельных проводников для передачи информации, и тактовой частотой, т. е. частотой, на которой работает контроллер шины при формировании циклов передачи информации.

Шина адреса предназначена для передачи адреса ячейки памяти или порта ввода-вывода. Разрядность шины адреса определяет максимальное число ячеек памяти, к которым может обратиться МП.

Шина данных обеспечивает передачу команд и данных. Разрядность данной шины во многом определяет пропускную способность системной шины и производительность ПК.

Шина управления предназначена для управления системной шиной, т. е. обеспечивает ее работу. Разрядность данной шины определяется алгоритмом ее работы, который задается контроллером шины.

В качестве системной шины в настоящее время в ПК преимущественно используется шина PCI (Peripheral Component Interconnect Bus – взаимосвязь периферийных компонентов). Шина PC/была разработана компанией Intel в 1992 г. Шина данных PCI может быть 32– или 64-разрядной, тактовая частота контроллера этой шины соответственно равна 33 или 66 МГц. Шина адреса имеет 32 разряда. До системной шины РС/в ПК использовались системные шины ISA (Industry Standard Architecture), EISA (Extended Industry Standard Architecture), MCA (Micro Channel Architecture), VIB (VESA EocalBus), разработанная в 1992 г. ассоциацией стандартов видеооборудования VESA (Video Electronics Standards Association). Более подробно об этих системных шинах можно прочесть в соответствующей литературе .

Кроме системной платы, как уже отмечалось, в системный блок устанавливаются накопители информации на гибких (НГМД), жестких (НЖМД) и оптических дисках (НОД), накопитель на магнитной ленте (НМЛ), сетевой адаптер (СА), модем (встроенный), блок питания (БП) и устройства охлаждения (УО).

Накопители информации НГМД, НЖМД, НОД, НМЛ и т. д. достаточно подробно описаны в гл. 6.

Сетевой адаптер, или сетевая карта, устанавливается в ПК в том случае, если его необходимо подключить к компьютерной сети, т. е. совокупности компьютеров, между которыми осуществляется обмен информацией по высокоскоростным каналам связи: радиоканалам, оптоволоконным, кабельным и т. д. Сетевая карта имеет свой уникальный адрес, который однозначно определяет адрес ПК в сети. Данные, необходимые для передачи с одного компьютера на другой, сетевая карта формирует в специальные пакеты и пересылает их адресату – другой сетевой карте, установленной в другом компьютере сети. Данные поступают к сетевой карте по системной магистрали ПК. Скорость передачи данных по сети через сетевые карты составляет от 10 до 100 Мбит/с. Крупными производителями сетевых карт и сетевого оборудования являются компании Intel, Linksys, ZyXEL, Eline и т. д.

Модем (модулятор – демодулятор) представляет собой устройство для передачи данных в цифровом виде по аналоговым линиям связи, предназначенное для подключения ПК к глобальной сети Internet (Интернет) по обычной телефонной или специальной линии. Модемы подразделяются на аналоговые и цифровые, встроенные в системный блок и внешние. Цифровые данные, поступающие в аналоговый модем из ПК, преобразуются в нем с помощью модулятора в непрерывный аналоговый сигнал и передаются по телефонной или специальной линии адресату. Демодулятор осуществляет обратное преобразование сигнала (демодуляцию), т. е. преобразует аналоговый сигнал в цифровой сигнал, и передает восстановленные цифровые данные в ПК. Скорость передачи данных из сети и в сеть Интернет у аналоговых модемов невелика и составляет в зависимости от поддерживаемого модемом протокола передачи данных 33,6 или 56,6 Кбит/с. Цифровые модемы используют более совершенные технологии передачи цифровых данных (например, технологии xDSI), но стоят пока существенно дороже аналоговых. Скорость передачи данных в таких модемах может достигать 8 Мбит/с.

Внутренние модемы конструктивно выполнены в виде платы, на которой размещены радиоэлектронные компоненты. Устанавливаются такие модемы в системный блок и подключаются к системной магистрали ПК через разъем (слот) на материнской плате. К разъему вход-выход самого модема подключается телефонная или специальная линия.

Внешние по отношению к системному блоку модемы конструктивно выполнены в виде функционально законченных устройств. Подключается модем через соответствующий порт (указывается в техническом описании на внешний модем) системного блока ПК.

5.2.2.2. Устройства ввода информации в персональный компьютер

В качестве устройств ввода информации в ПК используются клавиатура, координатные устройства ввода (манипуляторы типа мышь, трекбол, контактная или сенсорная панель, джойстик), сканер, цифровые камеры (цифровые фотоаппараты, видеокамеры), микрофон и т. д.

Клавиатурой (keyboard) называется устройство для ручного ввода информации в ПК. Современные типы клавиатур различаются конструктивным исполнением, количеством и назначением клавиш, способом соединения с системным блоком, способом формирования кода символа при нажатии клавиши и т. д.

Конструктивное исполнение во многом определяется фирмой-изготовителем клавиатуры, которая, как правило, учитывает особенности операционной системы, с которой работает пользователь (например, клавиатура, ориентированная на использование операционной системы семейства Windows).

Клавиатуры различаются количеством и назначением клавиш. Для IBM-совместимых ПК за основу принят стандарт клавиатуры, имеющей 101 клавишу, при этом клавиши сгруппированы в блоки: блок функциональных клавиш (F1, F2, F3 и т. д.), блок букв, цифр и вспомогательных символов; блок управляющих клавиш (Shift, Ctrl, Alt и т. д.); блок мультимедийных клавиш; блок цифровых клавиш.

По способу соединения с системным блоком различаются проводные и беспроводные клавиатуры. В IBM-совместимых ПК проводная клавиатура соединяется с системным блоком посредством электрического кабеля, который подключается к СОМ, PS/2 или USB портам системного блока. В беспроводной клавиатуре передача информации в системный блок происходит с помощью передатчика инфракрасного излучения, приемник инфракрасного излучения подключается к порту USB.

В IBM-совместимых ПК стандартной конфигурации имеются два последовательных порта – СОМ1 и COM2 (от англ. communicate – передавать), в которых данные, предварительно сформированные в пакеты, передаются побитно. Передача данных происходит под управлением интерфейса (протокол передачи) RS-232. Обмен данными в соответствии со спецификацией протокола RS-232 происходит последовательно, методом асинхронной передачи. При этом каждому байту предшествует так называемый старт-бит (всегда имеющий значение логического). Он сигнализирует приемнику о начале пакета. За ним следуют биты данных и (не всегда) бит четности. Завершает посылку стоп-бит, сигнализирующий о начале паузы между пакетами.

Выпускаемая в настоящее время клавиатура не подключается к системному блоку ПК посредством порта СОМ, поскольку данный порт, также как и LPT (параллельный), ориентирован на архитектуру ПК, в которых применялась системная шина ISA. Для подключения клавиатуры используются в основном последовательные порты ввода данных PS/2 и USB, работа которых осуществляется под управлением протоколов передачи данных PS/2 и USB.

По способу формирования кода символа при нажатии клавиши в современной клавиатуре применяется способ, при котором микроконтроллер (клавиатурный микропроцессор) последовательно опрашивает клавиши, формирует двоичный скан-код клавиши и передает его в системный блок. При таком способе передается не код символа, нарисованный на клавише, а код клавиши, которому затем программным путем присваивается соответствующий символ. Такой способ позволяет легко менять раскладку клавиатуры с латинской на кириллицу и наоборот при помощи управляющих клавиш, например (знак плюс означает совместное нажатие клавиш).

К координатным устройствам ввода относятся манипуляторы типа мышь, трекбол, контактная или сенсорная панель (TouchPad), джойстик. Данные устройства позволяют перемещать курсор или другие объекты соответствующих программ по двухмерному пространству экрана монитора с целью облегчения взаимодействия пользователя с ПК при вводе информации. Многие прикладные и системные компьютерные программы рассчитаны на интенсивное использование данных устройств.

Манипулятор типа мышь был изобретен Д. Энгельбартом в 1960-х гг. XX в. в США и свое название получил из-за некоторого сходства с настоящей мышью. При перемещении мыши по гладкой поверхности формируются два сигнала, которые передаются в системный блок и интерпретируются программой управления мышью как координаты точки двухмерного пространства экрана. Результатом этого является перемещение курсора по экрану. При нажатии клавиш (кнопок) или ролика, а также вращения его пальцем формируются и передаются сигналы в системный блок, которые затем однозначно интерпретируются программой управления мышью. С помощью нажатий на клавиши мыши или ролика, а также его вращения можно производить различные действия, при этом используются как одиночные, так и двойные нажатия (щелчки). Действия, которые следуют после таких нажатий клавиш мыши, зависят от конкретной компьютерной программы. Например, одинарный щелчок левой кнопкой мыши или удерживание кнопки позволяет выделять или перемещать объекты на рабочем столе операционных систем семейства Windows, двойной щелчок мышью по пиктограмме вызывает запуск соответствующей программы, щелчок правой кнопкой вызывает контекстное меню и т. д.

Манипуляторы типа мышь различаются по конструктивному исполнению, принципу работы, способу соединения с системным блоком и т. д.

Конструктивное исполнение мыши зависит от фирмы-производителя (Microsoft, Genius, Samsung и т. д.) и различается по внешнему виду и количеству кнопок. В IBM-совместимых ПК используются двух– и трехкнопочные мыши.

По принципу работы мыши подразделяются на электронно-механические и оптоэлектронные. Электронно-механическая мышь состоит из резинового шарика, вращающегося при перемещении мыши, двух роликов, расположенных под прямым углом и соприкасающихся с резиновым шариком, а также электронной схемы, преобразующей вращение роликов в последовательность электрических импульсов, передаваемых в системный блок ПК. Все компоненты электронно-механической мыши помещаются в корпус. В оптоэлектронной мыши отсутствуют подвижные механические элементы, а количество электрических импульсов, пропорциональных перемещению мыши и передаваемых в системный блок, формируются с помощью оптоэлектронных схем. Оптоэлектронные мыши значительно надежнее электронно-механических.

По способу соединения с системным блоком различаются проводные и беспроводные мыши. В IBM-совместимых ПК проводная мышь соединяется с системным блоком посредством электрического кабеля, который подключается к PS/2– или USB-портам системного блока. В беспроводной мыши передача информации в системный блок происходит с помощью передатчика инфракрасного излучения, приемник инфракрасного излучения подключается к порту USB.

Кроме мыши к координатным устройствам ввода относятся также трекбол, контактная, или сенсорная, панель, джойстик.

Трекбол по своему принципу действия аналогичен электронно-механической мыши, разница состоит лишь в том, что вместо перемещения мыши для вращения шарика, пользователь пальцем вращает сам шарик, который встраивается обычно в верхнюю часть клавиатуры ПК или корпуса мобильного ПК.

Сенсорная панель (TouchPad) представляет собой панель прямоугольной формы, которая чувствительна к нажатию пальцев и выполняет те же функции, что и манипулятор типа мышь. При касании пальцем руки экрана сенсорной панели в области касания происходит изменение электрических параметров (например, электрического заряда), что фиксируется электронным устройством сенсорной панели, и затем изменение электрического сигнала передается в контроллер, где с помощью программы обработки определяются координаты пальца на поверхности панели и соответственно координаты курсора на экране монитора ПК. Одинарный или двойной щелчок пальцем по экрану сенсорной панели соответствует нажатию кнопок мыши. Сенсорная панель используется преимущественно в мобильных ПК и встраивается в их корпус.

Джойстик – это устройство для ручного управления движением курсора на экране монитора. При этом в качестве курсора могут выступать различные объекты виртуальной реальности: люди, животные, автомобили и т. д. Используется джойстик с игровыми программами, т. е. является игровым манипулятором.

Для ввода графической информации в ПК используются различные устройства: дигитайзеры (графические планшеты), сканеры, цифровые фотоаппараты и цифровые видеокамеры.

Дигитайзер (digitizer), или графический планшет, представляет собой устройство, предназначенное для ввода в ПК графической информации повышенной сложности рукописным способом. Применение дигитайзеров обусловлено тем, что создание сложного графического изображения в графических редакторах (специальных компьютерных программах, например Paint или Adobe Photoshop) с помощью мыши – крайне затруднительное занятие.

Конструктивно дигитайзер состоит из двух основных компонентов: основания (планшета с рабочей поверхностью) и указателя – пера, напоминающего обычную шариковую ручку, перемещаемого по рабочей поверхности планшета и позволяющего создавать графическое изображение. Принцип работы подавляющего числа современных дигитайзеров основан на методе электромагнитной индукции: указатель при прикосновении к рабочей поверхности излучает сигнал, который принимает плоская антенна, находящаяся под рабочей поверхностью планшета. Антенна представляет собой металлическую сетку, конструктивно выполненную из проволоки или на основе печатной схемы, шаг такой сетки варьируется от 3 до 6 мм. Приняв сигнал, антенна передает его в электронное устройство обработки дигитайзера, где происходит его преобразование в двоичный код, соответствующий местоположению указателя на рабочей поверхности планшета, и далее код передается с помощью электрического кабеля и соответствующего порта ввода (USB – последовательный порт) в системный блок ПК. К основным характеристикам дигитайзера можно отнести: разрешающую способность, т. е. число линий на дюйм (Ipi – line per inch), размеры рабочей области, чувствительность к нажатию и т. д.

Например, запись в прайс-листе организации, торгующей дигитайзерами, может быть представлена в следующем виде:


Genius G-Pen 340 (3" х 4", 2000 lpi, 1024 уровня, USB).

Представим данную запись в развернутом виде:

Genius – компания-производитель;

G-Pen 340 – модель дигитайзера;

3" х 4" – рабочая область планшета (примерно 76 мм х 102 мм);

2000 lpi – разрешающая способность;

1024 уровня – чувствительность к нажатию на рабочую поверхность планшета;

USB – порт (интерфейс).


При подключении дигитайзера к ПК посредством интерфейса USB и его автоматического определения операционной системой Windows ХР он готов к работе, однако для управления чувствительностью к нажатию указателя потребуется специальная компьютерная программа – драйвер, которая поставляется совместно с дигитайзером.

Основными компаниями – производителями дигитайзеров являются Wacom (Япония), CalComp (США), Genius (Тайвань), Aiptek (Тайвань) и т. д.

Сканеры (от англ. scan – пристально разглядывать) являются самыми распространенными в настоящее время устройствами для ввода графической и текстовой информации с бумажного листа или пленки. В зависимости от возможности воспроизведения цвета графического изображения они подразделяются на черно-белые и цветные, а по конструктивному признаку – на ручные, роликовые и планшетного типа.

Принцип преобразования графического изображения в цифровую форму в сканерах основан на сканировании изображения, т. е. его последовательного считывания по строкам, преобразования в двоичный код и последующего ввода в ПК. В процессе сканирования изображения оно освещается с помощью специальных источников светового излучения, и затем отраженный свет воспринимается оптической системой сканера. Таким образом, сканер преобразует графическое изображение во множество точек, определяя для каждой точки ее координаты и цвет. По этим данным после соответствующей обработки на экране монитора ПК воспроизводится копия графического изображения.

В современных цветных сканерах в основном используется источник излучения белого света, а в оптической системе устанавливается специальный RGB-фильтр, который и определяет по отраженному свету в процессе сканирования цвет точек, из которого состоит графическое изображение. В черно-белых сканерах такой фильтр отсутствует.

Ручной сканер представляет собой устройство, в котором процесс сканирования изображения не является автоматическим, т. е. осуществляется вручную, путем его перемещения относительно графического изображения. Такой сканер позволяет сканировать (считывать) изображение выборочно (частично), а для сканирования всего изображения целиком необходимо производить несколько перемещений (проходов). Для совмещения полученных частей изображения используется специальное программное обеспечение, которое поставляется вместе со сканерами ручного типа. В настоящее время ручные сканеры не пользуются широкой популярностью у владельцев ПК из-за низкой степени автоматизации процесса сканирования изображения.

Роликовый сканер – это устройство, в котором подача листов с графическими изображениями для ввода в компьютер происходит автоматически, т. е. такие сканеры предназначены для пакетной обработки листовых документов, содержащих графическую или текстовую информацию. В этих сканерах лист с изображением или текстом перемещается относительно сканирующей головки. Данный тип сканеров в ПК практически не используется.

Среди перечисленных типов сканеров наиболее широко применяются планшетные сканеры, предназначенные в основном для офисного и домашнего использования, иногда их называют SOHO- сканеры (SOHO – от англ. Small Office Ноте Office). Сканеры этого типа появились в 1980-х гг. XX в. и благодаря оптимальному соотношению функциональных возможностей и удобству использования завоевали у пользователей ПК наибольшую популярность. В планшетных сканерах лист с изображением жестко фиксируется, что обеспечивает высокое качество сканирования и удобство в работе.

Конструктивно планшетный сканер состоит из следующих основных компонентов: корпуса, прозрачного стекла, сканирующей каретки (головки), блока управления, аналогово-цифрового преобразователя (АЦП), микропроцессора (МП), контроллера интерфейса, протяжного механизма, двигателя, блока питания и ряда дополнительных устройств.

Корпуса большинства выпускаемых сегодня планшетных сканеров для офиса и дома в основном сделаны из пластмассы и имеют прямоугольную форму. Для придания прочности корпусу в нем используют специальные элементы, называемые ребрами жесткости. К корпусу планшетного сканера предъявляют достаточно жесткие требования в плане его герметичности, поскольку оптический блок сканера не допускает попадания на него пыли.

Прозрачное стекло находится под крышкой корпуса и предназначено для размещения на нем листа бумаги определенного формата (в основном А4) с нанесенным на лист графической или текстовой информацией или пленки с графическим изображением. После размещения на стекле лист или пленка накрываются крышкой сканера.

Сканирующая каретка – основной подвижный модуль планшетного сканера – устанавливается на лафет и вместе с ним перемещается по направляющим салазкам вдоль корпуса. Данный модуль состоит из следующих компонентов: оптического блока с системой линз и зеркал, светочувствительной матрицы, источника света и инвертора. В качестве основных элементов оптического блока могут использоваться микролинзы с самофокусировкой либо оптический объектив с оптическими зеркалами. Выбор этих элементов зависит от применяемой в сканере светочувствительной матрицы. Микролинзы с самофокусировкой используются совместно со светочувствительной матрицей типа CIS (Contact Image Sensor – контактный оптический датчик), а оптический объектив с оптическими зеркалами со светочувствительной матрицей CCD (Charge Coupled Device – прибор с зарядовой связью).

Сканирующая каретка, в которой используется матрица типа CIS, не имеет лампы подсветки (источника света), оптического объектива и зеркал, а приемный элемент, равный по ширине всему рабочему полю сканирования, состоит из светодиодной линейки (источник света), освещающей поверхность сканируемого изображения, самофокусирующихся микролинз и приемных датчиков (сенсоров) изображения. Отраженный от сканируемого изображения свет проецируется на перемещающийся над изображением вместе с кареткой приемный элемент, фокусируется микролинзами и попадает на приемные датчики, которые преобразуют падающий на них свет в электрический сигнал. Затем этот сигнал усиливается и поступает на вход АЦП. Сканирующая каретка, в которой используется матрица типа CIS, получается очень компактной, что дает возможность создавать достаточно тонкие и легкие сканеры, потребляющие незначительное количество электрической энергии. Однако сканеры, в которых используется эта матрица, имеют ряд недостатков, среди которых можно выделить небольшую глубину фокусировки изображения (глубину резкости). Если поместить на планшет такого сканера толстую книгу, то сканированное изображение получится с размытой полосой посередине, т. е. в том месте, где листы книги не соприкасается со стеклом. Кроме того, сканеры, в которых используется матрица типа CIS, обладают невысокой, по сравнению со сканерами на основе CCD разрешающей способностью – порядка 1200 dpi.

Сканирующая каретка, в которой используется матрица типа CCD, имеет лампу подсветки, оптический объектив и сложную систему зеркал, а приемный элемент представляет линейку приборов с зарядовой связью (матрицу CCD). В качестве лампы подсветки применяется в основном люминесцентная лампа с холодным катодом. Для свечения эту лампу необходимо подключить к высоковольтному источнику переменного напряжения, в качестве которого применяется отдельный блок, называемый инвертором. Матрица CCD состоит из приборов с зарядовой связью, которые представляют собой светочувствительные элементы, способные накапливать электрический заряд, пропорциональный уровню освещенности. Отраженный от сканируемого изображения свет проецируется на перемещающийся над изображением вместе с кареткой приемный элемент. Отраженный свет предварительно фокусируется с помощью оптического объектива и системы зеркал и попадает на светочувствительные элементы (CCD), которые преобразуют падающий на них свет в электрический сигнал. Этот сигнал затем усиливается и поступает на вход АЦП. Матрица CCD не прекращает работать все то время, пока лафет со сканирующей кареткой, приводимый шаговым электродвигателем, совершает путь от начала планшета до его конца. За один шаг перемещения каретки матрица целиком захватывает горизонтальную линию планшета, которая называется линией растра. По истечении времени, достаточного для обработки одной такой линии, каретка перемещается на небольшой шаг, и наступает очередь для сканирования следующей линии изображения. При этом число шагов каретки на дюйм ее перемещения по вертикали называется механическим разрешение сканера. Сканеры, в которых используется матрица CCD, имеют большую глубину резкости, высокую разрешающую способность (порядка 3200 dpi) и, как следствие, высокое качество сканирования.

АЦП – это устройство, которое преобразует аналоговый сигнал в цифровую форму, причем значение аналогового сигнала на входе АЦП соответствует этому значению на его выходе, но выраженному в двоичной системе счисления с соответствующим числом разрядов. Разрядность (число бит) АЦП характеризует точность преобразования аналогового сигнала и в основном определяет такую важную характеристику сканера, как глубина цвета. Разрядность современных АЦП, используемых в недорогих планшетных сканерах, варьируется в пределах от 24 до 48 бит.

Блок управления сканера предназначен для автономного управления работой сканера начинающими пользователями. Опытные пользователи управляют сканером с помощью ПК, а необходимые настройки перед сканированием задаются в пользовательском окне управляющей программы.

МП предназначен для согласованного управления всеми компонентами сканера и формирования данных об изображении для передачи персональному компьютеру. В некоторых моделях сканеров на МП возлагаются также функции контроллера интерфейса. Список программных инструкций для МП хранится в микросхеме постоянной памяти. Данные в эту микросхему записываются производителем сканера на этапе производства.

Протяжный механизм предназначен для перемещения сканирующей каретки и представляет собой зубчатый протяжной ремень, который крепится к каретке. Протяжной ремень приводится в движение электрическим шаговым двигателем. Шаговый двигатель через протяжной ремень перемещает каретку на строго определенное расстояние.

В качестве дополнительных устройств для сканера могут использоваться адаптеры для сканирования прозрачных пленок, слайдов, негативов (слайд-адаптеры) и автоподатчики документов.

Подключается планшетный сканер к системному блоку ПК посредством электрического кабеля и соответствующего порта. В качестве таких портов в настоящее время широко используются порты: USB (интерфейс Universal Serial Bus) и FireWire (IEEE1394, последовательный высокоскоростной интерфейс ввода-вывода).

К основным характеристикам сканеров относятся разрешение (оптическое и механическое), глубина цвета, тип матрицы и т. д.

Разрешение – важнейшая характеристика сканера. Оно измеряется в пикселях (точках) на дюйм – dpi (dotper inch – точек на дюйм) и показывает, сколько точек и линий (число шагов каретки) может различить сканер на отрезке длиной в один дюйм (25,4 мм). Разрешение записывается в виде произведения двух чисел, например 1200 х 2400 dpi. Первое число соответствует оптическому разрешению, второе – механическому.

Другая основная характеристика сканера – глубина цвета, измеряемая в битах. Чем больше эта величина, тем достовернее сканер может передать цвет каждой точки сканируемого изображения. У большинства планшетных сканеров глубина цвета, как правило, находится в пределах от 24 до 48 бит.

Рассмотрим в качестве примера запись в прайс-листе компании, торгующей сканерами:


BenQ 5250C (А4 Color, plain, 1200*2400dpi, USB2.0).

Представим данную запись в развернутом виде:

BenQ – компания-производитель;

5250C – модель сканера;

А4 Color – формат сканируемых листов А4 (210 х 297 мм), сканер цветной;

plain – сканер относится к сканерам планшетного типа;

1200*2400 dpi – разрешение сканера (оптическое разрешение равно 1200 dpi, механическое – 2400 dpi);

USB 2.0 – сканер подключается к порту USB 2.0 системного блока компьютера с помощью кабеля, входящего в комплект поставки.

Кроме того, данный сканер имеет глубину цвета 48 бит, светочувствительную матрицу CIS, пять кнопок быстрого доступа (для автономного управления) и габаритные размеры 412 х 258 х 38 мм.


После подключения сканера к системному блоку необходимо установить на компьютер программное обеспечение (ПО), которое входит в комплект поставки сканера. ПО для сканера можно условно разделить на две группы – системное и прикладное.

К системному ПО относят драйвер (от англ. driver – управляющая программа). С помощью этой программы обеспечивается связь между операционной системой ПК и сканером, осуществляется его управление и обмен данными.

К прикладному ПО относятся программы для обработки (корректировки, ретуширования и пр.) графических изображений и программы для машинописных и рукописных текстов, которые называются также программами распознавания текста или символов, – СО? – приложение (от англ. Optical Character Recognition – оптическое распознавание символов).

К программам для обработки графических изображений можно отнести: Adobe Photoshop, Adobe Photoshop Elements, Micrografx Picture Publisher и т. д. Например, для сканера BenQ 5250C в качестве прикладных программ для обработки изображений прилагаются программы Adobe AcrobatReader, Arcsoft PhotoBase, Arcsoft Photolmpression, Arcsoft PhotoPrinter, Photo Family software и пр.

Как уже отмечалось, с помощью сканера можно вводить в ПК и текстовые документы. Однако при этом тестовый документ преобразуется в файл графического формата, т. е. представляется в виде изображения, который затем необходимо преобразовать в текстовый формат с помощью специальных компьютерных программ – программ распознавания текстов (OCR). Для распознавания текста (символов), напечатанного на русском языке, в настоящее время широко используются компьютерные программы Finereader компании Abbyy Software House и CuneiForm компании Cognitive Technologies.

В настоящее время крупнейшими мировыми производителями сканеров являются компании Canon, Mustek, Epson, BenQ и т. д.

Для получения графической информации в виде фотоснимков и видеоизображений, непосредственно представленной в цифровой (компьютерной) форме, и последующего ввода данной информации в ПК используются цифровые фотоаппараты и цифровые видеокамеры.

Современные цифровые фотоаппараты предназначены в основном для получения неподвижных изображений, т. е. оцифрованных фотографических снимков, сохраненных в запоминающем устройстве фотоаппарата в виде графических файлов, которые после ввода в ПК могут быть подвергнуты соответствующей компьютерной обработке, сохранены в памяти компьютера или отпечатаны на фотобумаге при помощи принтера.

Конструктивно современные цифровые фотоаппараты состоят из следующих основных компонентов: корпуса, оптической системы (объектива) с электронно-механическим затвором, светочувствительной матрицы, электронного блока, кнопок управления, механических элементов, жидкокристаллического цветного дисплея, разъемов (слотов) для подключения внешних карт памяти и порта для подключения кабеля USB. Принцип работы цифрового фотоаппарата основан на проецировании изображения от фотографируемого объекта на светочувствительную матрицу с последующим его преобразованием в цифровую форму. После открытия затвора фотоаппарата отраженные от объекта световые лучи проходят через оптическую систему и попадают на светочувствительные элементы матрицы, на которых фокусируется изображение. Фокусировка, глубина диафрагмы (глубина резкости изображения) и выдержка (экспозиция – время открытия затвора, т. е. время проецирования изображения на светочувствительную матрицу) устанавливаются в цифровых фотоаппаратах автоматически или с помощью соответствующих пунктов меню настройки. Светочувствительные элементы матрицы, на которых фокусируется изображение от объекта, накапливают заряд, пропорциональный уровню освещенности. После закрытия затвора электронный блок считывает сигнал с каждого элемента, усиливает его, преобразует в цифровую форму и сохраняет его в виде графического файла в запоминающем устройстве электронного блока. Для получения цветного изображения объекта каждый светочувствительный элемент матрицы должен состоять из трех (по одному на каждый из основных) цветов – R, G, В. Однако применение таких матриц приводит к значительному удорожанию цифрового фотоаппарата в целом, поэтому для производства относительно недорогих цифровых фотоаппаратов используется матрица, в которой светочувствительные элементы организованы в так называемый цветовой массив Байера. В этом массиве половина светочувствительных элементов, расположенных в шахматном порядке, отвечает за зеленый цвет, к которому человеческий глаз наиболее чувствителен, а остальные светочувствительные элементы (по 25 %) считывают соответственно красный и синий цвета. Значения двух других цветов в каждой точке изображения интерполируются (определяются) в электронном блоке на основе существующих математических методов интерполяции.

Важнейшими компонентами цифрового фотоаппарата, определяющими качество его фотоснимков, являются оптическая система и светочувствительная матрица. В качестве светочувствительной матрицы в настоящее время используется CCD-матрица (Charge Coupled Device – прибор с зарядовой связью). Принцип действия ее в следующем: матрица состоит из массива прямоугольных светочувствительных элементов – конденсаторов, накапливающих электрический заряд под воздействием падающего на них света. После того как затвор фотоаппарата закрывается, с матрицы происходит считывание зарядов (последовательно, строка за строкой) и запись их значений в специальную считывающую строку, из которой последние, усиленные и преобразованные в цифровую форму, переносятся в память фотоаппарата. В процессе считывания зарядов CCD-матрица «очищается», и к моменту окончания цикла считывания она готова к записи следующего снимка. Именно возможность построчного считывания со светочувствительных элементов накопленных во время съемки зарядов и отсутствие необходимости в дополнительной «очистке» матрицы и сделали в итоге технологию CCD ведущей при производстве цифровых фотоаппаратов.

Основными характеристиками матрицы являются ее разрешение и размер. Разрешение матрицы измеряется в мегапикселях (Мрх – Mega pixels). Впервые этот термин был введен компанией Kodak в 1986 г., когда она создала промышленный образец CCD – матрицы с разрешением 1,4 Мрх.

Разрешение матрицы определяет количество ее светочувствительных элементов. Например, если указывается разрешающая способность матрицы равной 5 Мрх, то это означает, что матрица имеет количество рабочих светочувствительных элементов, равное 5 000 000 (пять миллионов), что соответствует разрешению изображения, равному 2560 х 1920, которое может быть получено на экране монитора компьютера при отношении сторон снимка снимка, равном 4: 3. Разрешение матрицы – важная характеристика, влияющая на качество получаемых снимков. Например, если вы хотите получить качественный снимок 10 х 15 см и отпечатать его на принтере, т. е. обеспечить разрешающую способность при печати на принтере не менее 300 dpi (такое разрешение при печати в фотолабораториях считается приемлемым для получения качественного снимка), или 120 точек на 1 см, то разрешение самой матрицы цифрового фотоаппарата должно быть не менее 2,16 Мрх (120 х 15 х 120 х 10 = 2160000 точек). Матрица с более высоким разрешением улучшит качество снимка за счет прорисовки более мелких деталей изображения, но определяющую роль здесь будет играть все же качество оптической системы цифрового фотоаппарата. Дальнейшее увеличение разрешения приводит к возрастанию цифровых шумов на выходе АЦП электронного блока, что особенно сильно проявляется в условиях слабой освещенности фотографируемого объекта, и как следствие – к ухудшению качества снимка. Один из способов уменьшения влияния шумов на качество снимка – увеличение размера матрицы. По этой причине размер светочувствительной матрицы также является важной характеристикой, влияющей на качество снимка.

Размер матрицы – это условная характеристика, она записывается в виде числа, которому соответствуют определенные геометрические размеры (размер по горизонтали и вертикали) матрицы, например 1/2,5", 1/2", 1/1,8" и т. д. В табл. 5.3 приведены соответствия между условным размером и реальным размером некоторых выпускаемых светочувствительных матриц.

Таблица 5.3

Между разрешением и размером матрицы существует зависимость: при постоянном размере матрицы шумы будут возрастать с увеличением ее разрешения, и наоборот, т. е. при постоянном разрешении матрицы шумы будут уменьшаться при увеличении ее размера. Однако увеличение размера матрицы приводит к повышению требований к оптической системе и, как следствие, – к удорожанию цифрового фотоаппарата в целом. Поэтому производители ищут компромисс между разрешением и размером матрицы.

Графическая информация о фотографируемом объекте после соответствующей обработки в электронном блоке (аналогово-цифрового преобразования, интерполяции, сжатия в стандарте JPEG и т. д.) сохраняется в запоминающем устройстве (памяти) цифрового фотоаппарата в виде графического файла. Формат графического файла изначально предполагает его сжатие с целью уменьшения информационного объема. Для сжатия исходного графического файла в цифровых фотоаппаратах используется алгоритм сжатия JPEG (Joint Photographic Experts Group – объединенная группа экспертов по фотографии), после которого файл имеет расширение *.jpg и уже в таком формате переносится в компьютер и может быть сохранен в его памяти. Информационный объем графического файла (одного кадра) зависит от разрешения матрицы цифрового фотоаппарата и алгоритма сжатия и в настоящее время в среднем равен 1 Мбайт.

Память в цифровом фотоаппарате подразделяется на внутреннюю (встроенную) и внешнюю. Встроенной памяти, как правило, недостаточно (ее объем зависит от модели фотоаппарата и в среднем для любительских фотоаппаратов варьируется в пределах от 16 до 32 Мбайт), по этой причине используют внешнюю память (карту памяти), объем которой может значительно превышать объем встроенной памяти (на порядок и выше). В настоящее время в основном используют две карты памяти – SD (Secure Digital) и ММС (MultiMediaCard). Данные карты приобретаются отдельно и устанавливаются в разъем (слот), расположенный в корпусе фотоаппарата.

Просмотр установленных параметров съемки в меню, наведение фотоаппарата на объект и просмотр отснятого кадра осуществляется с помощью жидкокристаллического цветного дисплея.

Для переноса полученного графического файла на компьютер с целью его предварительного просмотра, корректировки с помощью соответствующих компьютерных программ (например, Video Studio, Photo Explorer, Photo Express и т. д.) и последующей печати на принтере используется кабель, который подключается к порту USB системного блока ПК.

Так же, как и в предыдущих случаях, рассмотрим в качестве примера запись в прайс-листе компании, торгующей цифровыми фотоаппаратами:


Kodak EasyShare LS753 (5.0Мрх, 36-100mm, 2.8х, F3.0–4.9, JPG, 32Mb + 0Mb SD/MMC, 1.8", USB, Li-Ion).

Представим данную запись в развернутом виде:

Kodak – компания-производитель;

Easy Share LS753 – модель фотоаппарата;

5.0 Мрх – разрешение матрицы;

36-100 mm – фокусное расстояние объектива;

2.8х – диапазон изменения фокусного расстояния (оптический zoom, или оптический 2.8х-трансфокатор);

F3.0–4.9 – светосила объектива;

JPG – формат сжатия;

32Mb + 0Mb SD/MMC – встроенная память 32 Мбайт, слоты для карт памяти SD/MMC;

1.8" – размер жидкокристаллического дисплея (46 мм);

USB – порт подключения (интерфейс);

Li-Ion – источник электрического питания (аккумулятор).


В настоящее время крупнейшими мировыми производителями цифровых фотоаппаратов являются компании Canon, Kodak, Nikon, Panasonic и т. д.

Для получения подвижных графических изображений (видеоизображений) в цифровом виде и последующего их ввода в компьютер используются цифровые фотоаппараты, способные работать в режиме видеосъемки, и цифровые видеокамеры.

Многие современные любительские цифровые фотоаппараты имеют режим видеосъемки, который позволяет снимать видеосюжеты со скоростью несколько десятков кадров в секунду (например, 30 кадров в секунду). Полученный при этом видеофайл и сохраненный в памяти цифрового фотоаппарата в соответствующем формате (например, AVI, MOV, MPEG и т. д., что зависит от конкретной модели цифрового фотоаппарата) может быть воспроизведен на экране дисплея или перенесен на компьютер. При открытии (запуске) графического файла на экране дисплея фотоаппарата или компьютера проходит последовательность кадров (неподвижных графических изображений) с определенной скоростью, которая из-за инерционности человеческого глаза воспринимается как видеоизображение. Для получения более качественного видеоизображения в цифровой форме используются цифровые видеокамеры, в которых используются более качественная оптическая система и светочувствительная матрица, а также запоминающее устройство, имеющее больший объем памяти. Цифровые видеокамеры, также как и цифровые фотоаппараты, делятся на любительские и профессиональные, которые различаются по техническим и эксплуатационным характеристикам. У профессиональных цифровых фотоаппаратов и видеокамер они значительно выше. Любительские цифровые видеокамеры в основном имеют два формата: MiniDV, при котором запись производится на миниатюрную магнитную кассету, и DVD, при котором запись производится на оптический диск.

В настоящее время ведущими мировыми производителями цифровых видеокамер являются компании Sony, Panasonic, Philips, Canon и NC.

Для ввода звуковой информации в ПК используется микрофон, который подключается с помощью электрического кабеля к звуковой карте (звуковому контроллеру). Звуковая карта устанавливается в один из слотов (разъемов) на системной плате ПК. Микрофон преобразует звуковой сигнал в электрический, который затем поступает в звуковую карту. Звуковая карта принимает электрический сигнал от микрофона, преобразует его из аналоговой формы в цифровую и сохраняет звуковую информацию в виде файла, формат которого определяется компьютерной программой обработки звуковой информации (например, WMA – Windows Media Audio). Качество оцифрованной звуковой информации определяется параметрами АЦП звуковой карты: ее разрядностью (16–24 бит) и частотой дискретизации (44,1; 48; 96 или 192 кГц). Кроме того, современные звуковые карты имеют частотный диапазон воспроизводимого звука от 20 Гц до 20 КГц. Для ввода звуковой информации в ПК используются в основном электростатические (конденсаторные) микрофоны.

5.2.2.3. Устройства вывода информации с персонального компьютера

К устройствам вывода информации относятся монитор, принтер, графопостроитель (плоттер), звуковые колонки, наушники.

Монитор, или дисплей, относится к основным устройствам вывода информации в ПК и предназначен для визуального отображения графической и текстовой информации на своем экране. В отличие от принтера и плоттера монитор может отображать на своем экране как статическую, так и динамическую (изменяющуюся) информацию без ее долговременной фиксации. Монитор совместно с видеоконтроллером (видеоадаптером) обычно входит в состав видеосистемы или видеотерминала ПК.

По принципу действия мониторы в настоящее время различаются на следующие типы:

На основе электронно-лучевой трубки (ЭЛТ или CRT – Cathode Ray Tube);

На основе жидкокристаллических индикаторов (ЖКИ или LCD – Liquid Crystal Display);

Плазменные (PDP – Plasma Display Panels);

Светоизлучающие на основе органических материалов (LEP – Light Emission Plastics);

На основе автоэлектронной эмиссии (FED – Field Emission Display);

На основе низкотемпературного поликристаллического кремния (LTPS – Low Temperature Poly Silicon).

На сегодняшний день в ПК находят наибольшее применение два первых типа мониторов, основное отличие которых состоит в способе формирования изображения на экране. В мониторах первого типа основным элементом является электронно-лучевая трубка. Формируется изображение у такого монитора на внутренней поверхности экрана ЭЛТ, покрытого слоем люминофора – специального вещества, светящегося под воздействием электронного луча, который создается с помощью электронной пушки и управляется системами горизонтального и вертикального отклонения луча. Люминофор наносится на внутреннюю сторону ЭЛТ в виде точек – пикселей. В цветных мониторах каждый пиксель состоит из трех точек люминофора, которые под воздействием своего электронного луча (используется три электронных пушки) излучают соответственно красный, зеленый и синий цвета. Изменяя яркость свечения каждого из этих трех основных цветов при их смешивании, можно получить соответствующую палитру цветов. Перед экраном на пути электронов устанавливается тонкая металлическая пластина с большим количеством отверстий, расположенных напротив точек люминофора. Эта пластина обеспечивает попадание электронных лучей от трех пушек только в точки люминофора соответствующего цвета. Электронный луч под воздействием отклоняющей системы монитора перемещается по экрану слева направо и сверху вниз и появляется растр в виде светящихся разноцветных точек, который и создает у пользователя иллюзию изображения. Информационный и управляющий сигналы поступают на вход монитора с видеоадаптера.

Конструктивно монитор типа CRT состоит из корпуса, в котором располагаются ЭЛТ, системы вертикального и горизонтального управления лучом, электронный блок с кнопками управления, высоковольтный источник напряжения ЭЛТ, блок питания, разъемы для подключения к системному блоку ПК и сети переменного тока и т. д. Кроме того, в комплект поставки входят шнур электропитания, электрический (информационный) кабель, подставка под монитор.

К основным характеристикам монитора типа CRT относятся:

Разрешающая способность, которая определяется числом пикселей по горизонтали и вертикали, которая может принимать значения 800 х 600, 1024 х 768, 1152 х 864, 1280 х 720 и т. д.;

Глубина цвета, измеряется в битах, например 16 или 32 бит;

Размер пикселя, например 0,22, 0,24, 0,28 мм и т. д. Чем меньше размер пикселя, тем лучше качество монитора;

Размер экрана, который задается величиной его диагонали в дюймах, например 15", 17", 21" и т. д.;

Частота вертикальной (кадровой) развертки, которая определяет скорость смены кадров изображения и может варьироваться от 50 до 240 Гц. Чем выше частота кадров, тем меньше утомляемость глаз. Частота смены кадров зависит от разрешающей способности монитора – чем выше способность, тем меньше должна быть частота;

Частота горизонтальной развертки, варьируется в пределах 30–71 кГц.

Кроме того, на разрешающую способность и качество изображения монитора влияет объем видеопамяти видеоадаптера.

Подключается монитор к системному блоку компьютера (видеоадаптеру) посредством электрического кабеля и 15-контактного коннектора (разъема) D-Sub.

К мониторам типа CRT предъявляются достаточно жесткие требования к уровню магнитных и электрических излучений, которые неблагоприятно влияют на здоровье человека. В связи с этим каждый монитор должен иметь сертификат безопасности, представляющий набор требований к уровням магнитных и электрических излучений в разных диапазонах частот, к функции энергосбережения. Данный сертификат определяет экологическую безопасность и эргономические параметры. По мере совершенствования мониторов изменялись и требования к безопасности, которые отражались в сертификатах MPR II, ТСО-92, ТСО-95, ТСО-99 и т. д. В настоящее время действует в основном самый безопасный сертификат ТСО"03.

Рассмотрим в качестве примера запись в прайс-листе компании, торгующей мониторами типа CRT:


19" MONITOR 0.24 LG Natron F920B.

Представим данную запись в развернутом виде:

0.24 – размер пикселя;

LG – компания-производитель;

Flatron F920B – модель монитора.


Наибольшей популярностью в настоящее время пользуются мониторы типа LCD. Эта популярность, а также достоинства этого типа мониторов привели к тому, что многие производители прекращают выпуск CRT-мониторов. Принцип действия мониторов LCD основан на использовании в них веществ, находящихся при нормальных или близких к ним условиях в жидком состоянии, но обладающих некоторыми свойствами, например оптическими, характерными для кристаллических тел. Эти вещества называют жидкокристаллическими. Одним из представителей таких веществ является цианофенил.

Вещества, обладающие указанными свойствами, состоят из молекул, которые пропускают падающий на них свет в зависимости от своей ориентации в пространстве. Если оптические плоскости молекул жидкокристаллического вещества параллельны вектору электромагнитной индукции падающей на них составляющей света (части спектра светового излучения), то они ориентированы (поляризованы) в пространстве и пропускают эту составляющую света. В противном случае они не ориентированы (не поляризованы) и не пропускают ее. Ориентацией молекул в таких веществах можно управлять, воздействуя на них электрическим полем. Это свойство жидких кристаллов используется для формирования изображения на экране LCD-монитора.

Существует достаточно много конструкций LCD-мониторов и технологий их изготовления, которые очень сложны и рассмотрение их выходит за рамки данного учебного пособия. Основой LCD-монитора является жидкокристаллическая матрица, в которой изображение формируется с помощью горизонтальных и вертикальных прозрачных токопроводящих электродов, расположенных на поверхностях стеклянных пластин (подложек). Эти пластины расположены на очень близком расстоянии друг от друга. Между подложками помещается жидкокристаллическое вещество, молекулы которого изменяют свою поляризацию под воздействием подаваемого на электроды электрического напряжения. Если на вертикальные и горизонтальные электроды подавать последовательно с определенной периодичностью электрические импульсы, то поляризации будут подвергнуты только молекулы, находящиеся на пересечении этих электродов, и соответственно свет от встроенного в монитор источника будет проходить без ослабления только в местах этих пересечений. Этот свет и будет формировать у пользователя образ графического изображения, состоящего из светящихся точек (пикселей) на экране монитора. Процесс подачи электрических импульсов на электроды периодически повторяется с частотой строчной и кадровой разверток монитора, и у пользователя из-за инерционности зрительного восприятия глаз будет формироваться неподвижное или подвижное графическое изображение на экране. В зависимости от конструкции в мониторах могут использоваться различные источники света: лампы подсветки или полупроводниковые приборы (транзисторы, диоды и т. д.). Жидкокристаллическая матрица в цветных мониторах содержит дополнительно красный, зеленый и синий светофильтры, которые выделяют из излучения источника белого света три основных компонента. Комбинируя основные цвета для каждой точки или пикселя экрана, можно воспроизвести заданную палитру цветов. В настоящее время для ПК в основном выпускаются LCD-мониторы, в которых матрица выполнена по технологии TFT(Thin Film Transistor – тонкопленочный транзистор). Данные матрицы называются также активными. В них с помощью специальной технологии на пересечении горизонтальных и вертикальных электродов устанавливаются активные управляющие элементы – тонкопленочные транзисторы. Количество транзисторов определяется максимально возможной разрешающей способностью монитора. В цветных мониторах каждый пиксель состоит из триады, поэтому если максимальная разрешающая способность LCD-монитора составляет, например, 1280 х 1024, то количество транзисторов будет равно 3 х 1280 х 1024 = 3 932160. Транзисторы выполняют в таких матрицах функции управления и подсветки для ячеек жидкокристаллического вещества. В отличие от пассивных матриц (в них отсутствуют тонкопленочные управляющие транзисторы) у активных матриц некоторые характеристики выше, что влияет на качество получаемого изображения и удобство работы с монитором, в котором установлена активная матрица. У активных матриц отсутствует влияние соседних пикселей друг на друга, меньше инерционность (последействие или латентность) пикселей, значительно больше угол обзора по горизонтали и вертикали. Угол обзора влияет на удобство работы с монитором. У мониторов с пассивной матрицей приемлемое качество изображения получается только при фронтальном расположении пользователя перед экраном монитора.

Конструктивно монитор типа LCD состоит из корпуса, в котором располагаются жидкокристаллическая матрица, электронный блок с кнопками управления, разъемы для подключения к системному блоку ПК. Источник питания, как правило, является выносным. Кроме того, в комплект поставки входят электрический (информационный) кабель и подставка под монитор.

Основные характеристики LCD-мониторов частично совпадают с характеристиками CRT-мониторов (разрешающая способность, глубина цвета, размер диагонали и т. д.), но имеется ряд важныхарактеристик, которые обязательно указываются в техническом паспорте на LCD-монитор. К таким характеристикам можно отнести:

Яркость – измеряется в канделах на метр квадратный и обычно находится в пределах от 200 до 400 кд/м 2 . Чем больше яркость, тем качественнее монитор;

Контрастность – одна из самых важныхарактеристик LCD-мониторов. Определяется как отношение яркости самого светлого участка экрана монитора к самому темному, среднее значение контрастности находится в пределах 600: 1V700: 1. Чем больше это соотношение, тем качественнее изображение на мониторе;

Инерционность, или латентность, пикселя – определяется как время отклика, или реакции, пикселя на видеосигнал. Значение этой характеристики у хороших мониторов находится в пределах 4-12 мс, при высокой латентности матрицы резкие движения курсором мыши оставляют шлейф на экране монитора;

Угол обзора – показывает, на какой угол может отклониться взгляд человека без потери им видимости изображения на экране монитора. Указывается такой угол как по вертикали, так и по горизонтали, у современных мониторов находится в пределах 170°;

Частота вертикальной (кадровой) развертки – определяет скорость смены кадров изображения и варьируется от 56 до 76 Гц.

Подключаются LCD-мониторы к системному блоку компьютера (видеоадаптеру) посредством электрического (информационного) кабеля и 15-контактного коннектора (разъема) D-Sub (аналоговый вход управления монитором) или с помощью коннектора DVI – Digital Video Interface (цифровой вход управления монитором).

Рассмотрим в качестве примера запись в прайс-листе компании, торгующей мониторам типа LCD:


19" MONITOR LG L1950B-SF Flatron (LCD, 1280x1024, +DVI).

Представим данную запись в развернутом виде:

19" – размер диагонали монитора (48,3 см);

LG – компания-производитель;

L1950В-SF Flatron модель монитора;

LCD – тип монитора;

1280 х 1024 – максимальная разрешающая способность монитора;

DVI – цифровой вход управления монитором.


Отметим преимущества и недостатки LCD-мониторов по сравнению с мониторами типа CRT. К преимуществам можно отнести:

Значительно меньшее потребление электроэнергии (до 40 Вт, CRT-70-100 Вт);

Хорошая фокусировка, отсутствие геометрических искажений и ошибок совмещения цветов;

Отсутствие мерцания экрана (отсутствует обратный ход луча);

Качество изображения одинаково для любой области экрана (у CRT качество изображения лучше в центре экрана);

Меньшие габаритные размеры и масса;

Отсутствие вредных для здоровья человека излучений. К недостаткам можно отнести:

Изменение разрешающей способности монитора приводит к необходимости заново отстраивать монитор;

Яркость монитора недостаточна для работы при ярком освещении и солнечном свете;

Отсутствие качественной цветовой калибровки;

Латентность матрицы.

В настоящее время ведущими мировыми производителями мониторов являются компании Sony, Panasonic, Philips, LG, Hitachi, Acer и др.

Управление работой монитора осуществляется посредством видеоадаптера. Видеоадаптер формирует служебные сигналы (синхросигналы строчной и кадровой разверток, сигнал управления яркостью и т. д.), а также хранит передаваемые МП данные о каждом пикселе монитора. Современные видеоадаптеры могут быть интегрированы в системную плату ПК или конструктивно выполняются в виде отдельной платы, устанавливаемой в слот (разъем) системной платы. Видеоадаптеры обеспечивают работу монитора в режиме SVGA (Super Video Graphics Array) с разрешающей способностью выше 800 х 600 точек.

Основная характеристика видеоадаптера – объем памяти, где хранятся передаваемые с МП данные о каждом пикселе монитора. В среднем объем видеопамяти составляет 128 Мбайт. Для ускорения процесса обработки видеоданных видеоадаптеры имеют собственный видеопроцессор, поэтому их называют также видеоконтроллерами. Видеоконтроллер может подключаться к чипсету с помощью локальной шины AGP (Accelerated Graphics Port), имеющей 32 разряда и частоту переключения, равную 66 МГц.

В настоящее время ведущими мировыми производителями видеоадаптеров являются компании Asustek, Matrox, Ati и др.

Кроме мониторов, основными устройствами вывода информации в ПК являются принтеры, которые в отличие от мониторов регистрируют информацию в основном на материальном носителе – бумаге, в удобном для чтения виде. Таким образом, если мониторы предназначены для индикации информации на своем экране, то принтеры – для ее регистрации на бумажном носителе.

Принтеры классифицируются по ряду признаков, выделим лишь основные – количество воспроизводимых цветов и способ печати.

По количеству воспроизводимых цветов принтеры подразделяются на монохромные (черно-белые) и цветные. Первые позволяют получать черно-белые символы, рисунки и т. д., вторые – цветные.

По способу печати принтеры можно подразделить на термографические, матричные, струйные, лазерные и специальные.

В термографических, матричных, струйных, лазерных и некоторых специальных принтерах изображение формируется на бумаге из отдельных точек, т. е. каждый печатаемый символ, рисунок или графическое изображение, полученное с помощью сканера, цифрового фотоаппарата и т. д., отображается на бумаге как определенная совокупность отдельных точек. Принцип формирования точек изображения и их количество на единицу поверхности (разрешение по горизонтали и вертикали) у перечисленных выше принтеров различаются.

В термографических принтерах для передачи на бумагу точек изображения использует нагрев. В принтерах с прямым нагревом используется бумага со специальным химическим покрытием (термобумага). В месте контакта нагретого термоэлемента и бумаги происходит химическая реакция, которая приводит к изменению цвета точки в данном месте. В термографических принтерах, основанных на теплопередаче, используется специальная красящая лента, краситель которой под действием нагрева от термоэлемента, расплавляясь, переносится на бумагу.

В матричных принтерах печатающая головка принтера содержит ряд тонких металлических стержней (иголок). Головка движется вдоль печатаемой строки, а стержни в нужный момент ударяют по бумаге через красящую ленту, оставляя на ней следы в виде точек. Из этих точек и формируется изображение на бумаге. Красящая лента вместе с лентопротяжным механизмом помещается в специальное съемное устройство – картридж (от англ. cartridge – кассета).

В струйных принтерах печатающая головка вместо металлических стержней содержит тонкие трубки – сопла (форсунки), через которые под большим давлением выбрызгиваются микроскопические капли специальных чернил на бумагу. Чернила помещаются в специальную емкость (чернильницу) и разбрызгиваются по контуру символа или рисунка. Размеры полученных точек на бумаге при этом в десятки раз меньше размеров точек, получаемых от матричного принтера. В настоящее время многие струйные принтеры поддерживают цветную печать. В цветных принтерах цвет каждой точки цветного изображения формируется за счет смешения базовых цветов (красного, зеленого и синего) в заданной пропорции.

В лазерных принтерах изображение также формируется из точек с помощью луча лазера, который создается лазерным генератором. В современных конструкциях принтеров в качестве лазерного генератора используются лазерные диоды, работающие в импульсном режиме. Изображение формируется на носителе за счет реализации нескольких операций. Первая операция включает в себя перенос изображения с помощью прерывистого луча лазера на специальный барабан (валик, покрытый тонким светочувствительным материалом, способным изменять электрический заряд точки под воздействием попавшего на него луча лазера. Далее барабан посыпается мелкодисперсионным порошком – тонером, который прилипает к барабану в точках, подвергшихся электролизации, и тем самым вычерчивает контур изображения. Тонер, не прилипший к барабану, удаляется и помещается в специальный бункер. Затем барабан с налипшим на него тонером прокатывается по бумаге и частицы красящего порошка переходят на бумагу. На завершающей операции происходит термическая обработка бумаги (нагрев до 200 °C), после чего порошок расплавляется и, проникая в структуру бумаги, остается в ней. Лазерные принтеры могут печатать и цветные изображения, для этого в них используются тонеры разного цвета.

Специальные принтеры входят в состав различных технических устройств и предназначены для печати не только на бумаге, но и на других материальных носителях – пленке, металле, картоне и т. д.

Конструктивно принтеры состоят из корпуса, в котором располагаются механические узлы (протяжный механизм для бумаги, входной и выходной лотки для приема и выхода бумаги и т. д.), электронного блока с кнопками управления, картриджа, блока питания, разъемов для подключения к системному блоку ПК.

К основным характеристикам принтеров относятся качество печати и производительность. Качество печати оценивается по разрешающей способности принтера и измеряется в пикселях (точках) на дюйм – dpi (dot per inch). При этом оценивается разрешающая способность как по горизонтали, так и по вертикали. Из перечисленных выше принтеров наиболее широко применяются струйные и лазерные, которые имеют достаточно высокое качество печати (разрешение 1200 х 1200 dpi и выше).

Производительность принтеров оценивается в основном скоростью печати, измеряемой максимальным количеством листов бумаги, которое принтер может отпечатать за минуту. Современные струйные и лазерные принтеры имеют максимальную скорость печати, равную нескольким десяткам страниц в минуту.

Подключаются принтеры к системному блоку компьютера посредством электрического (информационного) кабеля и соответствующего порта. В настоящее время широко используются параллельные (LPT) и последовательные (USB) порты.

Рассмотрим в качестве примера запись в прайс-листе компании, торгующей принтерами:


Samsung ML-2550 (А4, лазерный, 24 стр/мин, 1200dpi, USB2.0/ LPT).

Представим данную запись в развернутом виде:

Samsung – компания-производитель;

ML-2550 – модель принтера;

А4 – формат используемой бумаги (210 х 297 мм);

Лазерный – тип принтера;

24 стр./мин. – максимальная скорость монохромной печати;

1200 dpi – разрешающая способность (1200 х 1200 dpi);

USB2.0/LPT – порты компьютера, к которым может подключаться принтер.


В настоящее время ведущими мировыми производителями принтеров являются компании Epson, Canon, Hewlett Packard, Samsung, Lexmark и др.

Принтеры предназначены в основном для печати изображений на бумаге форматом А4 и A3, для печати изображений более крупных форматов используются графопостроители, или плоттеры (от англ. plot – чертить). Используются плоттеры в основном для вывода графической информации – чертежей, схем, диаграмм и т. п. По способу печати они делятся на две большие группы – векторные и растровые.

В векторных плоттерах пишущий узел перемещается в двух направлениях: в горизонтальном и вертикальном, вычерчивая на бумаге непрерывные линии. По конструкции пишущего узла они сходны с пишущим узлом струйного принтера.

В растровых плоттерах пишущий узел перемещается только в горизонтальном направлении и изображение формируется строка за строкой при перемещении бумаги в вертикальном направлении относительно пишущего узла. В таких плоттерах могут использоваться струйные или лазерные пишущие узлы.

К устройствам вывода информации относятся также звуковые или акустические колонки и наушники, которые предназначены для вывода звуковой информации с ПК. Данные устройства входят в состав аудиосистемы ПК, которая обеспечивает запись, обработку и воспроизведение звука с помощью ПК. Аудиосистема состоит из звуковой карты (звукового адаптера или контроллера), акустической системы (акустические колонки и наушники) и микрофона. С помощью аудиосистемы можно выводить как звуковую информацию, записанную на оптических дисках, так и информацию, сохраненную в виде файлов форматов WMA (Windows Media Audio), МРС (MusePack), МР3 (MPEG – 1 Layer 3 – звуковой формат с высоким уровнем сжатия звуковой информации) и т. д. Акустические колонки и наушники преобразуют электрический сигнал, поступающий с выхода звуковой карты, в звуковой (акустический) сигнал, воспринимаемый человеческим ухом. В ПК в основном применяются активные акустические колонки, которые имеют встроенный усилитель низкой частоты и источник питания.

В настоящее время ведущими мировыми производителями акустических систем для компьютеров являются компании Genius, Philips, Defender, Microlab и др.

5.3. Определение состава и характеристик оборудования персонального компьютера

При решении ряда практических задач, связанных с использованием определенных программных средств, возникает необходимость в определении и уточнении состава и характеристик оборудования ПК, установленного на рабочем месте. Эта необходимость обычно продиктована требованиями, которые предъявляют программные средства к аппаратному обеспечению ПК. Как правило, при продаже программного продукта на упаковке, в которой находится носитель с программным продуктом, указываются требования к аппаратным средствам компьютера.

Существует достаточно много компьютерных программ, позволяющих определить состав и характеристики оборудования ПК. Воспользуемся компьютерной программой «Сведения о системе», которая входит в состав служебных программ операционной системы Windows ХР. Пуск – Программы – Стандартные – Служебные – Сведения о системе]. После запуска программы откроется основное окно программы, приведенное на рис. 5.5. В открывшемся окне можно определить тип и тактовую частоту микропроцессора, используемого в ПК, полный объем физической памяти (объем оперативной памяти) и т. д. Если в левой части окна открыть раздел «Компоненты», можно определить компоненты, входящие в состав ПК, например устройства мультимедиа, устройства ввода, порты и запоминающие устройства.


Рис. 5.5. Окно программы «Сведения о системе»


Кроме данной программы для определения состава и характеристик оборудования ПК можно воспользоваться программой «Панель управления», входящей в состав операционной системы Windows ХР. Для запуска данной программы необходимо выполнить команду: [Кнопка Пуск – Настройка – Панель управления – Система]. В открывшемся окне «Свойства системы» необходимо выбрать вкладку «Оборудование» и нажать кнопку «Диспетчер устройств». После выполнение этих действий откроется окно «Диспетчер устройств», представленное на рис. 5.6.


Рис. 5.6. Окно программы «Диспетчер устройств»


Раскрывая отдельные разделы «Диспетчера устройств», можно пополнить сведения о составе и характеристиках оборудования ПК.

Кроме программ, с помощью которых можно определить состав и характеристики ПК, существуют программы, позволяющие отображать процессы, связанные с хронологией загрузки центрального процессора и оперативной памяти. Для запуска такой программы в операционной системе Windows ХР необходимо выполнить несложную операцию: нажать одновременно три клавиши . После выполнения этой операции появится окно, представленное на рис. 5.7, в котором необходимо выбрать вкладку «Быстродействие».


Рис. 5.7. Окно программы «Диспетчер задач Windows»


На рис. 5.7 видно, что ЦП (центральный процессор или МП) практически не используется. Выбрав вкладку «Приложения» можно увидеть все компьютерные программы, запущенные к этому моменту времени. Вкладка «Процессы» позволяет увидеть набор активных программ, входящих в состав операционной системы Windows ХР, и долю ресурса ЦП, которую они используют. Имея возможность планирования заданий, предоставляемую операционной системой Windows ХР, можно запланировать включение в определенное время программ, потребляющих значительные ресурсы компьютера (например, Microsoft Word или Excel), и наблюдать, как изменяется уровень потребления ресурсов в момент запуска программ.

Упражнения для самостоятельного выполнения

1. Провести классификацию ПК, установленного на рабочем месте в компьютерном классе, в соответствии с классификационными признаками, приведенными в п. 5.1.

2. Определить состав и основные характеристики оборудования ПК, установленного на рабочем месте в компьютерном классе. Информацию о составе и характеристиках оборудования ПК представить с помощью следующей таблицы:


3. Нарисовать структурную схему ПК, установленного на рабочем месте в компьютерном классе, с помощью программы Microsoft Excel.

4. Определить, к какому виду устройств ПК относятся нижеследующие записи в прайс-листе организации, торгующей ПК, и представить данные записи в развернутом виде:

CPU Intel Celeron D 352 3.2 ГГц/ 512K/ 533МГц 775-LGA;

Genius G-Pen 560 (4.5" x 6", 2000 lpi, 1024 уровня, USB);

Canon CanoScan 5000F(A4 Color, plain, 2400 x 4800dpi, USB 2.0, слайд-адаптер);

BenQ Digital Camera E53 (5.0Mpx, 32-96mm, 3x, F2.8–4.8, JPG, (8-32) Mb SD, 2.5", USB, Li-Ion);

17" MONITOR 0.27 LG Matron EZ T710PU;

17" MONITOR LG L1770HQ-BF Flatron (LCD, 1280x1024, +DVI);

Epson STYLUS COLOR 680 (A4, 2880dpi, USB).

5. Запланировать запуск программы Microsoft Excel через 3 минуты от момента планирования и провести наблюдение, как будет изменяться потребление ресурсов в момент загрузки Microsoft Excel с помощью программы «Диспетчер задач Windows».

Для планирования включения программ Microsoft Excel необходимо открыть окно программы «Мастер планирования заданий». Для запуска данной программы необходимо выполнить команды: [Кнопка Пуск – Программы – Стандартные – Служебные – Назначенные задания/Добавить задание].

Рассмотрим устройство персонального компьютера.

Настольный персональный компьютер минимальной конфигурации состоит из системного блока, монитора и клавиатуры. К системному блоку могут присоединяться другие устройства: манипуляторы, принтеры, сканеры, внешний модем или факс-модем. Устройства, подключаемые к системному блоку, называются внешними устройствами. Каждое из устройств подключается к специальному разъему на задней стенке системного блока. Эти разъемы называются порты. Каждый из портов в системном блоке соединяется с микросхемой, обслуживающей данное устройство. Эта микросхема называется контроллером (например, контроллер клавиатуры или жесткого диска) или адаптером , например, видеоадаптер, обслуживающий монитор.

Рис. Принципиальная схема устройства системного блока персонального компьютера.

В корпусе системного блока размещены материнская плата с процессором и оперативной памятью, блок питания, винчестер, дисковод гибких дисков, дисковод CD-ROM или CD RW, видеокарта, звуковая и сетевая карты, контроллеры различных устройств.

Материнская или системная плата – главный компонент, к которому подключены все элементы компьютера. На материнских платах первого поколения устанавливались процессор, шина, чипсет, оперативная память, BIOS, контроллеры, вспомогательные микросхемы, а также предусматривались позиции (слоты) для дополнительных устройств. Сейчас наиболее распространены материнские платы, содержащие в себе только основные узлы, а все остальные необходимые, но отсутствующие элементы (видеоадаптер, звуковая карта, модем и другие устройства) располагаются на других платах. Они подключаются к системной плате через слоты шин.

Процессор (CPU – Central Processor Unit – центральное процессорное устройство) – это основная микросхема, которая представляет собой арифметико-логическое устройство, управляющее работой компьютера и обработкой данных. Он находится внутри системного блока и установлен на материнской плате.

Главная характеристика процессора - быстродействие . Оно определяется средним количеством арифметических и логических операций, производимых в секунду. Операции, производимые процессором, разделены на такты . Такт – это элементарная операция процессора. Каждая операция – сложение, вычитание, сдвиг и т.д., может быть представлена как последовательность элементарных операций. Количество тактов, выполняемых за 1 секунду, определяет тактовую частоту процессора . Чем она больше для данного типа процессора, тем быстрее работает процессор.

Кроме тактовой частоты на быстродействие влияет тип процессора. Первые процессоры фирмы Intel имели числовую маркировку: 8086, 80286,80386,80486. Начиная с 1995, процессоры фирмы Intel имеют названия Pentium Pro, Pentium II, Pentium III, Pentium IV. Используемые в современных ПК процессоры выпускаются также фирмами AMD и Cyrix (AMD аналогичны Cyrix). В каждом поколении процессоров одной фирмы операции выполняются с помощью все меньшего количества тактов, поэтому компьютеры, имеющие одну тактовую частоту, но принадлежащие к разным поколениям, будут иметь разное быстродействие: более поздняя реализация работает быстрее.

Кроме этого, на быстродействие процессора влияет размер его кэш-памяти. Кэш-память – это сверхоперативная память, доступ к которой осуществляется многократно быстрее, чем к оперативной памяти. Эта память служит для хранения наиболее часто используемых данных. Самая быстрая – это кэш-память первого уровня . Ее объем стандартен и составляет 32 Кбайт у Intel и до 64 Кбайт для AMD. Кэш-память второго уровня чуть менее быстрая, различается по объему от 128 Кбайт у Intel Celeron до 2 Мбайт у Intel Xeon и либо встраивается в кристалл процессора, либо устанавливается отдельно не материнской плате.

Связь между всеми собственными и подключаемыми устройствами материнской платы выполняют ее шины и логические устройства.

Шина, системная магистраль - микросхема, управляющая процессами ввода и вывода через внешние устройства.Так как процессор – очень высокопроизводительная микросхема, было бы нерационально заставить его управлять процессами ввода и вывода. Так как эти процессы выполняются куда менее производительными устройствами – жестким или гибким дисками, монитором и другими, при выполнении ввода и вывода процессор вынужден был бы простаивать в ожидании завершения операции. Поэтому процессор только дает команду на ввод или вывод, а далее процессом управляет шина. Она дает команду контроллеру или адаптеру соответствующего устройства и проводит поток данных. Внешние устройства подключаются к контроллеру через порт (см. ниже). Быстродействиешины характеризуется частотой шины . Оно существенно влияет на быстродействие всего компьютера. Существует также видеошина AGP - ускоренный графический порт, предназначенный для высокоскоростной передачи графических данных.

Чипсет (Chipset) - базовый набор микросхем, обеспечивающий обмен данными между устройствами. Главные части чипсета – это так называемые «мосты» - северный (North Bridge) и южный (South Bridge). Первый служит для связи процессора, оперативной памяти и (если есть) видеошины. Второй соединяет шину PCI с контроллерами внешних устройств.

Оперативная память (RAM – random access memory). Служит для хранения оперативной информации – программ и данных. Устанавливается на материнской плате. Основные характеристики время доступа (измеряется в наносекундах), объем (измеряется в мега- или гигабайтах), и пропускная способность (измеряется в мегабайтах в секунду).

Виды оперативной памяти:

SRAM – статическая оперативная память используется, главным образом, в качестве кэш-памяти в силу высокой производительности.

DRAM – динамическая оперативная память используется в качестве оперативной памяти. Современные модификации: SDRAM , EDO DRAM , RDRAM , RDRAM . Подробнее о различных видах памяти читайте в специализированной литературе.

Дисководы являются накопителями – устройствами, предназначенными для долговременного хранения информации. К дисководам относятся НГМД – накопитель на гибких магнитных дисках или FDD , винчестер – накопитель на жестком диске или HDD , а также привод CD-ROM , CD-R или CD-RW .

Винчестер - накопитель на жестком магнитном диске, предназначенный для долговременного хранения информации, необходимой пользователю для повседневной работы. На жестком диске хранятся все необходимые пользователю программы и архивы, которые могут понадобиться в ближайшее время.

Основные характеристики жесткого диска:

Емкость - о бъем информации, которую можно разместить на диске.

Скорость чтения и передачи данных - скорость чтения последовательных данных с диска.

Среднее время поиска, доступа к данным - время, необходимое для поиска указанного адреса на диске.

Скорость вращения диска. Малая скорость увеличивает время доступа к данным.

Размер кэш-памяти. Как и у процессора, у жесткого диска имеется кэш-память. Эта память играет роль буфера при работе с диском. Наиболее часто используемые области диска дублируются в кэш-памяти, поэтому доступ к ним ускоряется.

Рассмотрим устройства для работы с компакт-дисками.

CD-ROM служит для чтения компакт-дисков. Стандартный размер компакт-диска составляет около 650 Мбайт. Основная характеристика – скорость чтения (скорость вращения) определяет, во сколько раз скорость чтения и вращения больше, чем скорость вращения стандартного аудиодиска, считываемого со скоростью 150 Кбайт/сек. Поэтому маркировка 32х означает, что скорость считывания информации равна 4800 Кбайт/сек.

CD-R - д исковод, с помощью которого можно наносить постоянную информацию на одноразовые «болванки». Скорость записи у них отличается от скорости чтения и тоже выражается в кратных единицах.

CD-RW - дисковод, которым можно записывать как CD-R, так и CD-RW- диски с возможностью перезаписи. Принцип действия у них существенно отличается от CD-R . Эти дисководы имеют тройную маркировку, например, 24х10х40, где первое число – скорость записи CD-R, второе – скорость записи CD-RW, а третья – скорость чтения дисков.

Видеосистема - это монитор и видеокарта.

Монитор - это экран для отображения информации, главное устройство вывода. Виды мониторов: электронно-лучевой – на основе электронно-лучевой трубки, жидкокристаллический – на основе жидкокристаллических элементов, и плазменный – в нем изображение формирует плазма.

Характеристики мониторов:

§ Размер экрана . Измеряется в дюймах (1 дюйм »2,5 см) по диагонали. Минимальный рабочий размер – 14’’ (14 дюймов), но в настоящее время стандартным является размер 17’’.

§ Разрешение – это количество пикселей, размещающееся на экране по горизонтали и вертикали. Единицей графической информации на экране является 1 пиксель (pixel). Стандартные режимы разрешения 640х480, 800х600,1024х864 и так далее. Чем больше разрешение, тем меньше размер зерна на экране, тем четче графическое изображение. У современных мониторов стандартный размер зерна около 0,25 мм.

§ Частота развертки – это количество обновлений изображения в секунду, характеристика для электронно-лучевых дисплеев. Чем ниже частота развертки, тем больше заметны эти обновления. Частота развертки настраивается, ее можно увеличить или уменьшить. Характеристикой монитора является максимальная частота развертки – предел возможности монитора. Нормально работать можно с монитором, имеющем максимальную частоту развертки 85 Гц.

Видеокарта (видеоадаптер) – это плата, формирующая изображение и передающая его на монитор. Основные элементы видеоадаптера – ядро SVGA, 2-D ускоритель, 3-D ускоритель, видеопамять, набор интерфейсов и др. Ускорители служат для быстрой обработки и вывода, соответственно, двухмерной (2- D, 2-dimension) и трехмерной (3- D, 3-dimension) графики.

Клавиатура - стандартное устройство ручного ввода информации. Современные клавиатуры имеют 104-105 клавиш. Клавиши делятся на четыре группы: алфавитно-цифровые, функциональные, служебные и дополнительные. Поскольку без знания клавиатуры работа на компьютере совершенно невозможна, рассмотрим назначение клавиш более подробно.

Алфавитно-цифровые клавиши предназначены для ввода информации и команд, набираемых буквами. Каждая клавиша имеет верхний и нижний регистры, вследствие чего может использоваться для ввода нескольких различных символов. Переключение между нижним и верхним регистрами может быть фиксированное, осуществляется нажатием клавиши , или нефиксированное, осуществляется нажатием и удержанием при вводе символа клавиши . Функциональные клавиши от F1 до F12 выполняют различные функции, назначение которых в каждой конкретной программе разное. Только клавиша F1 почти всегда выполняет одну и ту же функцию - вызывает справочную систему.

Служебные клавиши располагаются слева и справа от алфавитно-цифровой клавиатуры и для удобства использования сдублированы. Познакомимся с их назначением:

самая важная клавиша – это , только после ее нажатия начинает выполняться набранная команда, а при вводе данных - они пересылаются в память;

клавиши не имеют самостоятельного значения и используются в сочетании с другими клавишами при формировании различных команд;

отменяет последнюю введенную команду;

служит для ввода позиций табуляции при наборе текста;

однократное нажатие клавиши стирает последний введенный с клавиатуры символ или символ слева от курсора, а клавиши - удаляет символ справа от курсора;

клавиши , и Выполняют различные функции в зависимости от действующей операционной системы, например, Выводит на принтер копию экрана в операционной системе MS-DOS, а в Windows сохраняет ее в буфере обмена;

Приостанавливает/прерывает текущий процесс;

справа от алфавитно-цифровой клавиатуры расположены клавиши управления перемещением курсора – это клавиши со стрелками, а также клавиши , , и ;

клавиши /Переводят курсор на одну страницу вверх/вниз, а / - в начало или конец текущей строки соответственно;

почти всегда переключает режим вставки/замены, но в некоторых программах может выполнять и другую функцию; включает режим ввода заглавных букв клавиатуры, о чем свидетельствует одноименный световой индикатор в правом верхнем углу клавиатуры;

клавиша предназначена для переключения дополнительной клавиатуры в режим ввода цифр;

цифровые клавиши дополнительной клавиатуры кроме своего основного назначения могут использоваться также для ввода символов отсутствующих на клавиатуре, но расширенный код ASCII которых известен. Например, если при нажатой клавише набрать код 0167, на экране появится символ §.

Мышь – манипулятор, представляющий собой плоскую коробочку с кнопками, перемещение которой по плоской поверхности синхронизировано с перемещением указателя мыши на экране монитора. Перемещения мыши и щелчки ее кнопок по объектам и элементам управления являются событиями для специальной системной программы – драйвера мыши, котораяанализирует эти события и, преобразовав их в данные, передает в программу, с которой в данный момент работает пользователь. Программа определяет соответствующую команду и выполняет ее. Взаимодействие монитора и мыши обеспечивает графический интерфейс . Для начала работы мыши после ее подключения требуется загрузка специальной системной программы – драйвера мыши , если он не установлен при загрузке операционной системы.

Программное обеспечение ПК.

Основная мощь современных вычислительных систем заключена в аппаратном обеспечении, но без программного обеспечения она не реализуется. Если Вы купили все аппаратные средства, но не установили никакого программного обеспечения, то толку от такого ПК меньше даже, чем от телевизора. Считать это «железо» компьютером невозможно. К счастью, теперь такого не бывает. Уже при покупке вам установят базовое программное обеспечение, а по вашему желанию и кое-что еще. Что же такое программное обеспечение?

По функциональному признаку программные средства можно разделить на базовое (системное ) программное обеспечение и прикладное .

Базовое (системное) программное обеспечение является неотъемлемой частью ПК также как аппаратное обеспечение. Без его наличия ПК работать вообще не может. В состав базового программного обеспечения входят:

§ Операционные системы;

§ Сервисные программы;

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

По теме «Аппаратные и программные средства ИТ

1. Аппаратные средства информационных технологий

Состав вычислительной системы называется конфигурацией и состоит из аппаратной и программной конфигураций (средств). К аппаратным средствам вычислительных систем относятся устройства и приборы, образующие аппаратную конфигурацию. Современные компьютеры и вычислительные комплексы имеют блочно-модульную конструкцию - аппаратную конфигурацию, необходимую для исполнения конкретных видов работ и их можно собирать из готовых узлов и блоков.

По характеру расположения устройств относительно центрального процессора различают внутренние и внешние устройства. К внутр енним устройствам относятся материнская плата, жесткий диск (винчестер), дисковод для гибких дисков (обычно на 3,5 дюйма), дисковод для компакт-дисков (CD и DVD), видеокарта, звуковая карта, как правило, называются большинство устройств ввода-вывода данных (иногда их также называют периферийными устройствами) и некоторые устройства, предназначенные для длительного хранения данных. Не останавливаясь подробно на внутренних устройствах, перейдем к краткой характеристике внешних устройств, которые можно подразделить на три группы.

1.1 Аппаратные средства ввода информации

* клавиатура - предназначена для ввода алфавитно-цифровой информации. Обычно используется 101-клавишная клавиатура. Кроме клавишной клавиатуры бывают мембранные (вместо клавиш мембрана) и сен сорные (в которой движение пальцев заменяют манипуляции с мышью). В данном случае управление курсором производится простым движением пальца по коврику. Перспективны разработки программ, позволяющих с помощью обычного микрофона вводить речь человека компьютер;

* мышь - наиболее распространенный тип манипуляторов. В корпусе мыши установлены кнопки для выполнения действий и шарик перемещения по коврику. Большинство современных мышек являются оптическими как проводные, так и беспроводные и снабжены колесиком, позволяющим передвигаться по документу без использования линеек прокрутки

* трекбол (шаровой манипулятор) - используется в основном вместо мыши в переносных персональных компьютерах, называемых «Ноутбук» (Notebook). В этом случае перемещение курсора по экрану обеспечивается вращением шара, не требуется коврика и места для перемещения манипулятора по столу;

* джойстик - представляет собой ручку управления и наиболее часто используется в компьютерных игровых приставках;

* устройства сканирования (сканеры) -- используются для ввода в компьютер графической информации: фотографий, рисунков, слайдов, а также текстовых документов;

* цифровая камера (видеокамеры и фотоаппараты) - позволяют получать видеоизображение и фотоснимки непосредственно в цифровом коде. Цифровые видеокамеры могут быть постоянно подключены к компьютеру и обеспечивать запись видеоизображения на жесткий диск или его передачу по компьютерным сетям. Цифровые фотоаппараты позволяют получать высококачественные фотографии, для хранения которых используются специальные модули памяти или жесткие диски очень маленького размера. Запись изображения на жесткий диск компьютера может осуществляться с помощью подключения камеры к USB порту компьютера;

* ТВ-тюнер - при подключении его ко входу телевизионной антенны можно просматривать телевизионные передачи непосредственно на компьютере;

* микрофон - используется для ввода в компьютер звуковой информации, при этом микрофон подключается ко входу звуковой карты.

1.2 Аппаратные средства вывода информации

* монитор - предназначен для отображения символьной и графической информации. Большинство мониторов реализовано на базеэлектронно-лучевых трубок, напоминающих кинескопы обычных телевизоров. Однако на смену таких мониторов приходят плоско панельные. Экраны на плоских панелях могут быть основаны на нескольких технологиях: жидких кристаллах (LCD), плазменных (PDP), светодиодных элементах (LED), электронной эмиссии (FED) и др.;

* принтер - предназначен для вывода данных на бумагу. По принципу действия принтеры делятся на матричные, струйные и лазерные;

* плоттер (графопостроитель) - устройство для вывода широкоформатной графической информации на бумагу (ватман) плакатов, чертежей, электрических и электронных схем и т.п. Принцип действия плоттеров такой же, как и у струйных принтеров;

* звуковые колонки - используются для вывода звуковых сигналов;

* мультимедийный проектор - позволяет воспроизводить на большом экране информацию, получаемую от самых разнообразных источников сигнала: компьютера, видеомагнитофона, видеокамеры, фотокамеры, DVD-проигрывателя, игровой приставки;

* модем - устройство для передачи цифровой информации по телефонным или выделенным каналам связи, обеспечивает интеграцию персонального компьютера в информационное пространство через подключение к компьютерным сетям (Интернету). По техническим характеристикам бывают модемы внутренние и внешние;

* сетевая карта - устройство для высокоскоростного межкомпьютерного обмена цифровой информацией на небольших расстояниях, включается в системную плату компьютера. Она связана с аналогичным устройством другого компьютера высокочастотной линией.

1.3 Устройства хранения данных

аппаратный устройство данные клавиатура

* оперативная память(ЯАМ) - устройство, предназначенное для хранения обрабатываемой информации и программ, управляющих процессом обработки информации. Оперативная память хранит загруженную, выполняющуюся на сей момент программу и данные, которые с ее помощью обрабатываются;

* кэш-память (cache - запас) - это сверхбыстрая оперативная память, предназначенная для временного хранения текущих данных и помещенная между оперативной памятью и процессором. Объем кэш- памяти до 1 Мб;

* CMOS - память -- предназначена для длительного хранения данных о конфигурации и настройке компьютера (дата, время, пароль), том числе и когда питание компьютера выключено. При этом данные записываются и считываются под управлением команд, содержащихся в другом виде памяти - BIOS;

* BIOS - постоянная память, хранящая информацию при отключенном питании теоретически сколь угодно долго, в которую данные занесены при ее изготовлении. Такой вид памяти называй ROM ;

* жесткий магнитный диск (винчестер, HDD ) -- постоянная память, предназначенная для долговременного хранения всей имеющейся в компьютере информации.

В настоящее время для хранения информации во внешних носителях используются следующие средства:

* гибкие диски (дискеты) - наиболее распространенная форма хранения небольших объемов информации. В настоящее время в основном используются дискеты в 3,5 дюйма, емкостью 1, 44 Mб. Напомним, что один символ составляет 1 байт информации; 1024 байта равняются 1 Кбайту (кило); 1024 Кбайт составляют 1 Мбайт (мега); 1024 Мбайта равняются 1 Гбайту (гига); 1024 Гбайт составляют 1 Тбайт (тера). Гибкие магнитные диски помещаются в пластмассовый корпус. Все дискеты перед употреблением форматируются. Следует отметить, что дискеты весьма ненадежный носитель информации, поэтому необходимо предохранять их от воздействия сильных магнитных полей, нагревания и механических повреждений;

* магнитооптические устройства (CD - ROM , CD - RW , DVD -диски) - получили широкое распространение в компьютерных системах высокого уровня благодаря своей универсальности. С их помощью решаются задачи резервного копирования, обмена данными и их накопления. К тому же они имеют значительный объем памяти. Например, большинство CD-дисков имеют емкость в 700-750 Мбайт, а DVD - порядка 40 Гбайт. В зависимости от типа дисков на них можно произвести одноразовую (CD-R) или многоразовую (CD-RW) запись. Для записи и воспроизведения информации с таких дисков необходимо комплектовать компьютер специальными дисководами. Для сохранения информации на таких дисках необходимо предохранять их от механических повреждений (царапин, сколов) и загрязнения;

* ZIP -накопители - имеют емкость 100/250 Мбайт, подобен по принципу действия дискете, но вставляется в специальный дисковод;

* CompactFlash (CF ) - самый распространенный, универсальный и перспективный формат. Легко подключается к любому ноутбуку. Основная область применения - цифровая фотография;

* USB Flash Drive - последовательный интерфейс USB с пропускной способностью 12 Мбит/с или его современный вариант USB 2.0 с пропускной способностью до 480 Мбит/с. Сам носитель заключен в обтекаемый компактный корпус, напоминающий автомобильный брелок. Может служить не только «переносчиком» файлов, но и работать как обычный накопитель - с него можно запускать приложения, воспроизводить музыку и сжатое видео, редактировать и создавать файлы. В перспективе, очевидно, смогут полностью заменить собой обычные дискеты и частично -перезаписываемые компакт-диски;

* xD Picture Card (eXtreme Digital ) - новый тип флэш-памяти, разработанная компанией Toshiba специально для цифровых фотоаппаратов;

* съемные жесткие диски - практически это те же жесткие диски, помещенные в специальный футляр и возможностью подключения к компьютеру, могут работать и как дополнительный жесткий диск на стационарном компьютере.

2. Программные средства информационных технологий

информационный технология устройство клавиатура

Программные средства информационных технологий можно разделить на две большие группы: базовые и прикладные.

Базовые программные средства относятся к инструментальной страте информационных технологий и включают в себя: * операционные системы (ОС); * языки программирования; * программные среды; * системы управления базами данных (СУБД). Прикладные программные средства предназначены для решения комплекса задач или отдельных задач в различных предметных областях.

ОС предназначены для управления ресурсами ЭВМ и процессами, использующими эти ресурсы. В настоящее время существуют две основные линии развития ОС: Windows и Unix. Генеалогические линии данных ОС развивались следующим образом: 1. СР/М > QDOS > 86-DOS > MS-DOS > Windows. 2. Multics > UNIX > Minix > Linux.

Каждая версия может отличаться добавлением новых функциональных возможностей (сетевые средства, ориентация наразные процессоры, многопроцессорные конфигурации и др.). Большинство алгоритмических языков программирования (Си, Паскаль) созданы на рубеже 60 - 70-х годов (за исключением Java). Позже времени периодически появлялись новые языки программирования, однакона практике они не получили широкого и продолжительного распространения. Другим направлением в эволюции современных языков программирования были попытки создания универсальных языков (Алгол, PL/1, Ада), объединяют в себе достоинства ранее разработанных.

Появление ПК и ОС с графическим интерфейсом (Mac OS, Windows) привело к смещению внимания разработчиков программного обеспечения в сферу визуального или объектно-ориентированного программирования, сетевых протоколов, баз данных. Это привело к тому, что в настоящее времяв качестве инструментальной среды используется конкретная среда программирования (Delphi, Access и др.) и знания базового языка программирования не требуется.

Семантическое описание любой конструкции языка (оператор, тип данных, процедура и т.д.) должно содержать не менее трех обязательных частей:

* список компонент (в Типе указателя это компоненты Имя типа и Базовый тип);

* описание каждой компоненты;

* описание конструкции в целом.

Для синтаксического описания обычно используется формальное описание конструкции, например, в виде БНФ. Синтаксическое описание присутствует в любом языке, начиная с Алгола.

Среди большого числа языков самую заметную роль в развитии программирования сыграли три пары: Алгол-60 и Фортран, Паскаль и Си, Java и Си++. Эти языки не случайно объединены в пары, так как противостояние заложенных в них идей способствовало прогрессивному развитию.

Создание универсального компилятора возможно двумя путями:

1. Использование общих конструкций (область пересечения), исключение специфических конструкций языков (область объединения). Это приведет к обеднению всех языков программирования.

2. Использование всех имеющихся конструкций (область объединения + область пересечения). Такой подход приведет к значительному расширению семантической базы и использованию дополнительных ресурсов.

С точки зрения информационных технологий программирование имеет промышленный характер, который соответствует традиционным стадиям жизненного цикла программного продукта: * анализ требований;

Размещено на Allbest.ru

Подобные документы

    Аппаратные средства (устройство ввода и управляющее устройство – контроллер). Управляющие программы для - драйверы. Стандарт "Plug and Play" (подключи и работай) для автоматической настройки устройства. Классификация устройств ввода и их основные виды.

    презентация , добавлен 17.05.2010

    Принцип действия процессора, оперативной памяти персонального компьютера. Ввод данных с помощью клавиатуры, мыши, графического планшета, сканера, цифровой камеры и микрофона. Использование устройств для вывода информации: монитора, принтера и колонок.

    презентация , добавлен 05.02.2014

    Отображение текстовой или графической информации на компьютере. Ввод данных и управление различными объектами операционной системы. Внешние и внутренние устройства. Устройства записи-считывания информации на гибких магнитных и жёстких магнитных дисках.

    презентация , добавлен 23.02.2015

    Базовая конфигурация персонального компьютера и минимальный комплект аппаратных средств. Внутренние и внешние устройства ввода и вывода. Назначение и функции системного блока, клавиатуры, "мыши", принтера, микрофона, монитора, колонок и наушников.

    реферат , добавлен 20.01.2010

    Состав вычислительной системы - конфигурация компьютера, его аппаратные и программные средства. Устройства и приборы, образующие аппаратную конфигурацию персонального компьютера. Основная память, порты ввода-вывода, адаптер периферийного устройства.

    презентация , добавлен 15.04.2013

    Устройства вывода данных, преобразующие ASCII-коды. Ввод данных непосредственно с бумажного документа. Принцип действия принтера, плоттера (графопостроителя), пенмауса, сканера, графического планшета, моноблока, наушников, колонок, микрофона, web-камеры.

    презентация , добавлен 16.10.2012

    Характеристика разновидностей устройств ввода информации: клавиатуры, сканера, графического планшета, средств речевого ввода, мыши, джойстика, светового пера. Исследование принципов ввода информации с бумажных носителей, разрешающей способности матрицы.

    курсовая работа , добавлен 07.11.2011

    Устройства ввода как аппаратные средства для преобразования информации из формы, понятной человеку, в форму, воспринимаемую компьютером, их разновидности и отличительные признаки, сферы применения и функциональные особенности, современные новинки.

    презентация , добавлен 26.10.2010

    Определение основных функций процессора. Микросхема процессора и выводы шин адреса, данных и управления. Функции памяти и устройств ввода/вывода (мыши, клавиатуры, джойстика). Описание функций внутренних регистров микропроцессора. Оперативная память.

    презентация , добавлен 17.06.2014

    Описание устройства и принципа работы составных элементов компьютера: системного блока, платы, центрального процессора, кеш-памяти, материнской платы BIOS и CMOS, запоминающего устройства RAM, компьютерной шины, логических контроллеров, аппаратных портов.

Системный блок представляет собой основной узел компьютера, внутри которого установлены наиболее важные компоненты. Устройства, находящиеся внутри системного блока, называются внутренними, а устройства, подключаемые к нему снаружи, внешними или периферийными. Внешними являются большинство устройств ввода-вывода и некоторые устройства, предназначенные для длительного хранения данных.

Внутренними устройствами являются:

материнская плата;

центральный процессор;

оперативная память;

жесткий диск;

видеокарта;

звуковая карта (интегрированная в материнскую плату либо подключаемая через интерфейсы);

дисковод компакт-дисков;

На материнской плате размещены:

набор микросхем, управляющих работой внутренних устройств компьютера;

шины - наборы проводников, по которым происходит обмен сигналами между внутренними устройствами компьютера;

постоянное запоминающее устройство - микросхема, предназначенная для хранения некоторых важных данных, когда компьютер выключен;

оперативное запоминающее устройство;

разъемы для подключения дополнительных устройств.

Центральный процессор -- электронный блок либо интегральная схема (микропроцессор), исполняющая машинные инструкции (код программ), главная часть аппаратного обеспечения компьютера или программируемого логического контроллера. Иногда называют микропроцессором или просто процессором.

Главными характеристиками ЦПУ являются: тактовая частота, производительность, энергопотребление, нормы литографического процесса, используемого при производстве (для микропроцессоров) и архитектура.

Ранние ЦП создавались в виде уникальных составных частей для уникальных, и даже единственных в своём роде, компьютерных систем. Позднее от дорогостоящего способа разработки процессоров, предназначенных для выполнения одной единственной или нескольких узкоспециализированных программ, производители компьютеров перешли к серийному изготовлению типовых классов многоцелевых процессорных устройств. Тенденция к стандартизации компьютерных комплектующих зародилась в эпоху бурного развития полупроводниковых элементов, мейнфреймов и миникомпьютеров, а с появлением интегральных схем она стала ещё более популярной. Создание микросхем позволило ещё больше увеличить сложность ЦП с одновременным уменьшением их физических размеров. Стандартизация и миниатюризация процессоров привели к глубокому проникновению основанных на них цифровых устройств в повседневную жизнь человека. Современные процессоры можно найти не только в таких высокотехнологичных устройствах, как компьютеры, но и в автомобилях, калькуляторах, мобильных телефонах и даже в детских игрушках. Чаще всего они представлены микроконтроллерами, где помимо вычислительного устройства на кристалле расположены дополнительные компоненты (память программ и данных, интерфейсы, порты ввода-вывода, таймеры и др.). Современные вычислительные возможности микроконтроллера сравнимы с процессорами персональных ЭВМ десятилетней давности, а чаще даже значительно превосходят их показатели.

Оперативная память -- энергозависимая часть системы компьютерной памяти, в которой временно хранятся входные, выходные и промежуточные данные программы процессора . Наиболее распространенные типы DIMM и SIMM .

Обмен данными между процессором и оперативной памятью производится:

непосредственно;

через сверхбыструю память 0-го уровня -- регистры в АЛУ , либо при наличии аппаратного кэша процессора -- через кэш.

Энергосберегающие режимы работы материнской платы компьютера позволяют переводить его в режим «сна», что значительно сокращает уровень потребления компьютером электроэнергии. В режиме «гибернация» питание ОЗУ отключается. Для сохранения содержимого ОЗУ в таком случае , перед отключением питания, записывают содержимого ОЗУ в специальный файл, расположенный обычно на жёстком диске, или раздел жёсткого диска . Например, в ОС Windows XP это файл hiberfil.sys, в ОС семейства Unix -- специальный swap-раздел ).

В общем случае, ОЗУ содержит программы и данные ОС и запущенные прикладные программы пользователя и данные этих программ, поэтому от объёма оперативной памяти зависит количество задач, которые одновременно может выполнять компьютер под управлением ОС.

Жесткий диск - основное устройство долговременного хранения больших объемов данных и программ. Это группа соосных дисков, имеющих магнитное покрытие и вращающихся с высокой скоростью. Таким образом, жесткий диск имеет несколько рабочих поверхностей. Над каждой поверхностью располагается головка чтения/записи. При высоких скоростях вращения дисков в зазоре между головкой и поверхностью образуется аэродинамическая подушка, и головка парит над магнитной поверхностью на высоте нескольких тысячных долей миллиметра. При изменении силы тока, протекающего через головку, происходит изменение напряженности магнитного поля в зазоре, что вызывает изменение ориентации ферромагнитных частиц, образующих покрытие диска. При считывании данных намагниченные частицы, проходя вблизи головки, наводят в ней ЭДС самоиндукции. Возникающие при этом электрические сигналы усиливаются и обрабатываются. Управление работой жесткого диска выполняет специальное устройство - контроллер жесткого диска.

Твердотйльный накопитель (англ. solid-state drive, SSD) -- компьютерное немеханическое запоминающее устройство на основе микросхем памяти. Кроме них, SSD содержит управляющий контроллер. Различают два вида твердотельных накопителей: основанных на оперативной памяти, и основанных на флэш-памяти.

В настоящее время твердотельные накопители используются не только в компактных устройствах: ноутбуках, нетбуках, коммуникаторах и смартфонах, но могут быть использованы и в стационарных компьютерах для повышения производительности.

Существуют и так называемые гибридные жёсткие диски, появившиеся, в том числе, из-за текущей, пропорционально более высокой стоимости твердотельных накопителей. Такие устройства сочетают в одном устройстве накопитель на жёстких магнитных дисках (HDD) и твердотельный накопитель относительно небольшого объёма, в качестве кэша (для увеличения производительности и срока службы устройства, снижения энергопотребления).

Для хранения данных, а также мультимедийной информации, используются компакт-диски (cd, dvd, blu-ray), которые вставляются в дисковод. Аббревиатура CD-ROM (Compact Disc Read-Only Memory) переводится как «постоянное запоминающее устройство на основе компакт-диска). Принцип действия компакт-диска состоит в изменении отражательной способности поверхности диска под действием лазерного луча. Основным параметром дисководов CD-ROM является скорость чтения данных.

DVD (Digital Versatile Disc -- цифровой многоцелевой диск) --носитель информации, выполненный в форме диска, имеющего такой же размер, как и компакт-диск, но более плотную структуру рабочей поверхности, что позволяет хранить и считывать больший объём информации за счёт использования лазера с меньшей длиной волны и линзы с большей числовой апертурой.

Blu-ray Disc, BD -- формат оптического носителя, используемый для записи с повышенной плотностью и хранения цифровых данных, включая видео высокой чёткости. Стандарт Blu-ray был совместно разработан консорциумом BDA. Первый прототип нового носителя был представлен в октябре 2000 года. Коммерческий запуск формата Blu-ray прошёл весной 2006 года.

Blu-ray (букв. «синий луч») получил своё название от использования для записи и чтения коротковолнового (405 нм) «синего» (технически сине-фиолетового) лазера. Буква «e » была намеренно исключена из слова «blue», чтобы получить возможность зарегистрировать товарный знак, так как выражение «blue ray» является часто используемым и не может быть зарегистрировано как товарный знак.

С момента появления формата в 2006 году и до начала 2008 года у Blu-ray существовал серьёзный конкурент -- альтернативный формат HD DVD. В течение двух лет многие крупнейшие киностудии, которые изначально поддерживали HD DVD, постепенно перешли на Blu-ray. Warner Brothers , последняя компания, выпускавшая свою продукцию в обоих форматах, отказалась от использования HD DVD в январе 2008 года. 19 февраля того же года Toshiba, создатель формата, прекратила разработки в области HD DVD. Это событие положило конец очередной «войне форматов».

Видеокарта, электронное устройство, преобразующее графический образ, хранящийся как содержимое памяти компьютера (или самого адаптера), в форму, пригодную для дальнейшего вывода на экран монитора. Первые мониторы, построенные на электронно-лучевых трубках, работали по телевизионному принципу сканирования экрана электронным лучом, и для отображения требовался видеосигнал, генерируемый видеокартой.

Однако эта базовая функция, оставаясь нужной и востребованной, ушла в тень, перестав определять уровень возможностей формирования изображения - качество видеосигнала (чёткость изображения) очень мало связано с ценой и техническим уровнем современной видеокарты. В первую очередь, сейчас под графическим адаптером понимают устройство с графическим процессором -- графический ускоритель, который и занимается формированием самого графического образа. Современные видеокарты не ограничиваются простым выводом изображения, они имеют встроенный графический процессор, который может производить дополнительную обработку, снимая эту задачу с центрального процессора компьютера. Например, все современные видеокарты Nvidia и AMD (ATi) осуществляют рендеринг графического конвейера OpenGL и DirectX на аппаратном уровне. В последнее время также имеет место тенденция использовать вычислительные возможности графического процессора для решения неграфических задач.

Обычно видеокарта выполнена в виде печатной платы (плата расширения) и вставляется в разъём расширения, универсальный либо специализированный (AGP, PCI Express). Также широко распространены и встроенные (интегрированные) в системную плату видеокарты -- как в виде отдельного чипа, так и в качестве составляющей части северного моста чипсета или ЦПУ; в этом случае устройство, строго говоря, не может быть названо видеокартой.

Звуковая карта (звуковая плата, аудиокарта; англ. sound card) -- дополнительное оборудование персонального компьютера, позволяющее обрабатывать звук (выводить на акустические системы и/или записывать). На момент появления звуковые платы представляли собой отдельные карты расширения, устанавливаемые в соответствующий слот. В современных материнских платах представлены в виде интегрированного в материнскую плату аппаратного кодека

Последние материалы раздела:

Комментарии для Joomla с автомодерацией и защитой от спама
Комментарии для Joomla с автомодерацией и защитой от спама

В стандартной установке Joomla 3 присутствует плагин защиты от спам-ботов - ReCaptcha. Не секрет, что эта капча очень отпугивает посетителей,...

Запись Mail exchanger (MX)
Запись Mail exchanger (MX)

В зависимости от прописанных DNS-серверов ресурсные записи добавляются в панели управления хостингом или в Личном кабинете. Узнать, какие DNS...

Не волнуйтесь, я сейчас все объясню!
Не волнуйтесь, я сейчас все объясню!

Хранение информации в цифровом виде имеет множество преимуществ, среди которых самым значимым является тот объём данных, который может быть записан...